principal, and is revocable at bis will, unless it has been given for a valuable consideration. A ivarrant of Attorney is an authority to one or more attorneys to appear for the party executing it, in a court of record, at the suit of the person for whose benefit it is given, and to suffer judgment summarily to pass in his favour. It is usually given as a security to creditors for the summary recovery of money lent, or sums certain, but may be used in other case s also.
ATTORNEY-GENERAL, the chief law officer appointed to manage all the legal affairs and suits in which the Crown is interested. He is appointed by patent, authorising him to hold office during the Queen's pleasure. He is ex officio the leader of the bar, and only counsel of the highest eminence are appointed to the office. The royal mandate of 14th December 1814 gives him precedence in all the courts, and it is now settled that in the House of Lords he has precedence of the Lord Advocate, even in Scotch appeals. He is a necessary party to all proceedings affecting the Crown, and has extensive powers of control in matters relating to charities, lunatics estates, criminal prosecutions, &c. His assistant, also appointed by patent, is the Solicitor-General, who has full power to act in the absence of his principal, and by almost invariable usage, succeeds to his office when it becomes vacant. The income attached to these offices has hitherto been derived in great part from fees on patents for inventions, but by a recent arrangement the Attorney-General and Solicitor-General receive a salary of £7000 and £6000 respectively, exclusive of such fees as they may receive for any litigious business they may conduct on behalf of the Crown.
ATTRACTION. That the different parts of a material system influence each other's motions is a matter of daily observation. In some cases we cannot discover any material connection extending from the one body to the other. We call these cases of action at a distance, to distinguish them from those in which we can trace a continuous material bond of union between the bodies. The mutual action between two bodies is called stress. When the mutual action tends to bring the bodies nearer, or to prevent them from separating, it is called tension or attraction. When it tends to separate the bodies, or to prevent them from approaching, it is called pressure or repulsion. The names tension and pressure are used when the action is seen to take place through a medium. Attraction and repulsion are reserved for cases of action at a distance. The configuration of a material system can always be defined in terms of the mutual distances of the parts of the system. Any change of configuration must alter one or more of these distances. Hence the force which produces or resists such a change may be resolved into attractions or repulsions between those parts of the system whose distance is altered.
There has been a great deal of speculation as to the cause of such forces, one of them, namely, the pressure between bodies in contact, being supposed to be more easily conceived than any other kind of stress. Many attempts have therefore been made to resolve cases of apparent attraction and repulsion at a distance into cases of pressure. At one time the possibility of attraction at a distance was supposed to be refuted by asserting that a body cannot act where it is not, and that therefore all action between different portions of matter must be by direct contact. To this it was replied that we have no evidence that real contact ever takes place between two bodies, and that, in fact, when bodies are pressed against each other and in apparent contact, we may sometimes actually measure the distance between them, as when one piece of glass is laid on another, in which case a considerable pressure must be applied to bring the surfaces near enough to show the black spot of Newton's rings, which indicates a distance of about a ten thousandth of a millimetre. If, in order tc get rid of the idea of action at a distance, we imagine a material medium through which the action is transmitted, all that we have done is to substitute for a single action at a great distance a series of actions at smaller distances between the parts of the medium, so that we cannot even thus get rid of action at a distance.
The study of the mutual action between the parts of a material system has, in modern times, been greatly simplified by the introduction of the idea of the energy of the system. The energy of the system is measured by the amount of work which it can do in overcoming external resistances. It depends on the present configuration and motion of the system, and not on the manner in which the system has acquired that configuration and motion. A complete knowledge of the manner in which the energy of the system depends on its configuration and motion, is sufficient to determine all the forces acting between the parts of the system. For instance, if the system consists of two bodies, and if the energy depends on the distance between them, then if the energy increases when the distance increases, there must be attraction between the bodies, and if the energy diminishes when the distance increases, there must be repulsion between them. In the case of two gravitating masses m and m' at a distance r, the part of the energy which depends on r is . We may therefore express the fact that there is attraction between the two bodies by saying that the energy of the system consisting of the two bodies increases when their distance increases. The question, therefore, Why do the two bodies attract each other ? may be expressed in a different form. Why does the energy of the system increase when the distance increases ?
But we must bear in mind that the scientific or science- producing value of the efforts made to answer these old standing questions is not to be measured by the prospect they afford us of ultimately obtaining a solution, but by their effect in stimulating men to a thorough investigation of nature. To propose a scientific question presupposes scientific knowledge, and the questions which exercise men's minds in the present state of science may very likely be such that a little more knowledge would show us that no answer is possible. The scientific value of the question, How do bodies act on one another at a distance 1 is to be found in the stimulus it has given to investigations into the properties of the intervening medium.
Newton, in his Principia, deduces from the observed motions of the heavenly bodies the fact that they attract one another according to a definite law. This he gives as a result of strict dynamical reasoning, and by it he shows how not only the more conspicuous phenomena, but all the apparent irregularities of the celestial motions are the calculable results of a single principle. In his Principia he confines himself to the demonstration and development of this great step in the science of the mutual action of bodies. He says nothing there about the means by which bodies gravitate towards each other. But his mind did not rest at this point. We know that he did not believe in the direct action of bodies at a distance.
" It is inconceivable that inanimate brute matter should, without the mediation of something else which is not material, operate upon and affect other matter without mutual contact, as it must do if gravitation in the sense of Epicurus be essential and inherent in it. ... That gravity should be innate, inherent, and essential to matter, so that one body can act upon another at a distance, through a vacuum, without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity, that I believe no man, who has in philosophical matters a competent faculty of thinking, can ever fall into it." Letter to Bentley.
And we also know that he sought for the mechanism of