an unusually powerful development of the thoracic muscles.
The bones adhere strongly to the tongue, although, as proved by the use of hydrochloric acid, the greater part of the cartilage is still retained in them, which appears, however, to have undergone that transformation into gelatine which has been observed by v. Bibra in fossil bones. The surface of all the bones is in many spots covered with minute black specks, which, more especially under a lens, are seen to be formed of very delicate dendrites. These deposits, which were first observed on the bones by Dr. Mayer, are most distinct on the inner surface of the cranial bones. They consist of a ferruginous compound, and, from their black colour, may be supposed to contain manganese. Similar dendritic formations also occur, not unfrequently, on laminated rocks, and are usually found in minute fissures and cracks. At the meeting of the Lower Rhine Society at Bonn, on the 1st April, 1857, Prof. Mayer stated that he had noticed in the museum of Poppelsdorf similar dendritic crystallizations on several fossil bones of animals, and particularly on those of Ursus spelæus, but still more abundantly and beautifully displayed on the fossil bones and teeth of Equus adamiticus, Elephas primigenius, &c., from the caves of Bolve and Sundwig. Faint indications of similar dendrites were visible in a Roman skull from Siegburg; whilst other ancient skulls, which had lain for centuries in the earth, presented no trace of them.[1] I am indebted to H. v. Meyer for the following remarks on this subject:—
"The incipient formation of dendritic deposits, which were formerly regarded as a sign of a truly fossil condition, is interesting. It has even been supposed that in diluvial deposits the presence of dendrites might be re-
- ↑ Verh. des Naturhist. Vereins in Bonn, xiv. 1857.