current (449). Slight differences occurred, as before, sometimes in one direction, sometimes in another; but the final result was, that exactly the same quantity of water was decomposed in all the solutions by the same quantity of electricity, though the sulphuric acid in some was seventy-fold what it was in others. The strengths used were of specific gravity 1.495, and downwards.
463. When an acid having a specific gravity of about 1.336 was employed, the results were most uniform, and the oxygen and hydrogen (451) most constantly in the right proportion to each other. Such an acid gave more gas than one much weaker acted upon by the same current, apparently because it had less solvent power. If the acid were very strong, then a remarkable disappearance of oxygen took place; thus, one made by mixing two measures of strong oil of vitriol with one of water, gave forty-two volumes of hydrogen, but only twelve of oxygen. The hydrogen was very nearly the same with that evolved from acid of the specific gravity of 1.232. I have not yet had time to examine minutely the circumstances attending the disappearance of the oxygen in this case, but imagine it is due to the formation of oxywater, which Thénard has shown is favoured by the presence of acid.
464. Although not necessary for the practical use of the instrument I am describing, yet as connected with the important point of constant electro-chemical action upon water, I now investigated the effects produced by an electric current passing through aqueous solutions of acids, salts, and compounds, exceedingly different from each other in their nature, and found them to yield astonishingly uniform results. But many of them which are connected with a secondary action will be more usefully described hereafter (513).
465. When solutions of caustic potassa or soda, or sulphate of magnesia, or sulphate of soda, were acted upon by the electric current, just as much oxygen and hydrogen was evolved from them as from the diluted sulphuric acid, with which they were compared. When a solution of ammonia, rendered a better conductor by sulphate of ammonia (290), or a solution of sub-carbonate of potassa was experimented with, the hydrogen evolved was in the same quantity as that set free from the diluted sulphuric acid with which they were compared. Hence changes in the nature of the solution do not alter the constancy of electrolytic action upon water.