Page:Fenrg-03-00043.pdf/9

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  • Benamira, M., Ringuedé, A., Albin, V., Vannier, R.-N., Hildebrandt, L., Lagergren, C., et al. (2012). Gadolinia-doped ceria mixed with alkali carbonates for SOFC applications: II – an electrochemical insight. Int. J. Hydrogen Energy 37, 19371–19379. doi:10.1016/j.ijhydene.2011.10.062
  • Bidrawn, F., Kim, G., Gorre, G., Irvine, J. T. S., Vohs, J. M., and Gorte, R. J. (2008). Efficient reduction of CO2 in a solid oxide electrolyser. Electrochem. Solid-State Lett. 11, B167–B170. doi:10.1149/1.2943664
  • Boot-Handford, M. E., Abanades, J. C., Anthon, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N., et al. (2014). Carbon capture and storage update. Energy Environ. Sci. 7, 130. doi:10.1039/C3EE42350F
  • Bradley, J., Irvine, J. T. S., and Lakeman, J. B. (2004). Electricity producing fuel cell or battery device. Brit. Patent Appl. GB0426879.3, WO2006061639.
  • Broers, G. H. J. (1969). Survey of Basic Research on Fuel Cells with Fused Carbonate Electrolytes. Appeldoorn: Central Technisch Instituut TNO.
  • Cassir, M., McPhail, S., and Moreno, A. (2012). Strategies and new developments in the field of molten carbonates and high-temperature fuel cells in the carbon cycle. Int. J. Hydrogen Energy 37, 19345. doi:10.1016/j.ijhydene.2011.11.006
  • Chery, D., Albin, V., Lair, L., and Cassir, M. (2014). Thermodynamic and experimental approach of electrochemical reduction of CO2 in molten carbonates. Int. J. Hydrogen Energy 39, 12330. doi:10.1016/j.ijhydene.2014.03.113
  • Chery, D., Lair, V., and Cassir, M. (2015). CO2 electrochemical reduction into CO or C in molten carbonates: a thermodynamic point of view. Electrochim. Acta 160, 74–81. doi:10.1016/j.electacta.2015.01.216
  • Claes, P., Moyaux, D., and Peeter, D. (1999). Solubility and solvation of carbon dioxide in the molten Li2CO3/Na2CO3/K2CO3 (43.5:31.5:25.0 mol-%) eutectic mixture at 973 K I. Experimental part. Eur. J. Inorg. Chem. 4, 583–588. doi:10.1002/(SICI)1099-0682(199904)1999:4<583::AID-EJIC583>3.3.CO;2-P
  • Claes, P., Thirion, B., and Glibert, J. (1996). Solubility of CO2 in the molten carbonate Na2CO3-K2CO3 (42 mol%) eutectic mixture at 800°C. Electrochim. Acta 41, 141. doi:10.1016/0013-4686(95)00278-M
  • Das, S., and Wan Daud, W. M. A. (2014). Photocatalytic CO2 transformation into fuel: a review on advances in photocatalyst and photoreactor. Renew. Sustain. Energ. Rev. 39, 765–805. doi:10.1016/j.rser.2014.07.046
  • Flood, H., and Forland, T. (1947). The acidic and basic properties of oxides. Acta Chem. Scand. 1, 592–604. doi:10.3891/acta.chem.scand.01-0781
  • Gattrell, M., Gupta, N., and Co, A. (2007). Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manag. 48, 1255–1265. doi:10.1016/j.enconman.2006.09.019
  • Ge, J., Hu, L., Wang, W., Jiao, H., and Jiao, S. (2015). Electrochemical conversion of CO2 into negative electrode materials for Li-ion batteries. ChemElectroChem. 2, 224–230. doi:10.1002/celc.201402297
  • Groult, H., Kaplan, B., Komaba, S., Kumagai, N., Gupta, V., Nakajima, T., et al. (2003). Lithium insertion into carbonaceous anode materials prepared by electrolysis of molten Li-K-Na carbonates. J. Electrochem. Soc. 150, G67–G75. doi:10.1149/1.1531490
  • Groult, H., Kaplan, B., Lantelme, F., Komaba, S., Kumagai, N., Yashiro, H., et al. (2006). Preparation of carbon nanoparticles from electrolysis of molten carbonates and use as anode materials in lithium-ion batteries. Solid State Ionics. * 177, 869–875. doi:10.1016/j.ssi.2006.01.051
  • Hori, Y. (2008). “Electrochemical CO2 reduction on metal electrode,” in Modern Aspects of Electrochemistry, Vol. 42, eds C. G. Vayenas, R. E. White, and M. E. Gamboa-Aldeco (New York: Springer), 89.
  • Hu, B., Guild, C., and Suib, S. L. (2013). Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products (review). J. CO2 Utilization. 1, 18–27. doi:10.1016/j.jcou.2013.03.004
  • Hu, L., Rexed, I., Lindbergh, G., and Lagergren, C. (2014). Electrochemical performance of reversible molten carbonate fuel cells. Int. J. Hydrogen Energy 39, 12323–12329. doi:10.1016/j.ijhydene.2014.02.144
  • Ijije, H. V., Lawrence, R. C., and Chen, G. Z. (2014). Carbon electrodeposition in molten salts: electrode reactions and applications. RSC Adv. 4, 35808–35817. doi:10.1039/C4RA04629C
  • Irvine, J. T. S., Bradley, J. L., Lakeman, J. B. (2006). A fuel cell, WO2006061639-A2.
  • Janz, G. J., and Lorenz, M. R. (1961). Electrical conductance cell assembly for precise measurements with carbonates, oxides, and fluorides up to 1000°C. Rev. Sci. Instrum. 32, 130–133. doi:10.1063/1.17172
  • Jones, J. P., Surya Prakash, G. K., and Olah, G. A. (2014). Electrochemical CO2 reduction: recent advances and current trends. Irs. J. Chem. 54, 1451–1466. doi:10.1002/ijch.201400081
  • Kanai, Y., Fukunaga, K.-I., Terasaka, K., and Fujioka, S. (2013). Mass transfer in molten salt and suspended molten salt in bubble column. Cheml. Engineering Sc. 100, 153–159. doi:10.1016/j.ces.2012.11.029
  • Kaplan, B., Groult, H., Barhoun, A., Lantelme, F., Nakajim, T., Gupta, V., et al. (2002). Synthesis ans structural characterization of carbon power by electrolytic reduction of molten Li2CO3Na2CO3K2CO3. J. Electrochem. Soc. 149, D72–D78. doi:10.1149/1.146464884
  • Kaplan, V., Wachtel, E., Gartsman, K., Feldman, Y., and Lubomirsky, I. (2010). Conversion of CO2 to CO by electrolysis of molten lithium carbonate. J. Electrochem. Soc. 157, B552–B556. doi:10.1149/1.3308596
  • Karthikeyan, C., Rajeswari, S., Maruthamuthu, S., Subramanian, K., and Rajagopal, G. (2014). Biogenic ammonia for CO2 capturing and electrochemical conversion into bicarbonate and formate. J. CO2 Utilization. 6, 53–61. doi:10.1016/j.jcou.2014.03.004
  • Kojima, T., Miyazaki, Y., Nomura, K., and Tanimoto Density, K. (2008). Surface tension, and electrical conductivity of ternary molten carbonate system Li2CO3-Na2CO3-K2CO3 and methods for their estimation. J. Electrochem. Soc. 155, F150–F156. doi:10.1149/1.2917212
  • Lair, V., Albin, V., Ringuedé, A., and Cassir, M. (2012). Theoretical predictions vs. experimental measurements of the electrical conductivity of molten Li2CO3-K2CO3 modified by additives. Int. J. Hydrogen Energy 37, 19357–19364. doi:10.1016/j.ijhydene.2011.09.153
  • Le Van, K., Groult, H., Lantelme, F., Dubois, M., Avignant, D., Tressaud, A., et al. (2009). Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates. Electrochim. Acta 54, 4566–4573. doi:10.1016/j.electacta.2009.03.049
  • Licht, S. (2009). STEP (solar thermal electrochemical photo) generation of energetic molecules: a solar chemical process to end anthropogenic global warming. J. Phys. Chem. C 113, 16283–16292. doi:10.1021/jp9044644
  • Licht, S. (2011). Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach. Adv. Mater. 23, 5592–5612. doi:10.1002/adma.201103198
  • Licht, S., Cui, B., and Wang, B. (2013). STEP carbon capture – the barium advantage. J. CO2 Utilization. 2, 58–63. doi:10.1016/j.jcou.2013.03.006
  • Licht, S., Wang, B., and Wu, H. (2011). STEP—a solar chemical process to end anthropogenic global warming. II: experimental results. J. Phys. Chem. C 115, 11803–11821. doi:10.1021/jp111781a
  • Lim, R. J., Xie, M., Sk, M. A., Lee, J.-M., Fisher, A., Wang, X., et al. (2014). A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal. Today. 233, 169–180. doi:10.1016/j.cattod.2013.11.037
  • Lote, D. A. (2014). Literature Survey on Electrochemical Reduction of CO2. Int J. Electronic Electrical Eng. 7, 341–346. International Research Publication House.
  • Mahammadunnisa, S., Reddy, E. L., Ray, D., Subrahmanyam, C., and Whitehead, J. C. (2013). CO2 reduction to syngas and carbon nanofibers by plasma assisted in situ decomposition of water. Int. J. Green Gas Controm. 16, 361–363. doi:10.1016/j.ijggc.2013.04.008
  • Nabae, Y., Pointon, K. D., and Irvine, J. T. S. (2008). Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte. Energy Environ. Sci. 1, 148–155. doi:10.1039/B804785E
  • Novoselova, I. A., Oliynyk, N. F., and Volkov, S. V. (2007). “Electrolytic production of carbon nano-tubes in chloride-oxide melts under carbon dioxide pressure,” in: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials SE, eds T.
  • N. Veziroglu, S. Zaginaichenko, D. Schur, B. Baranowski, A. Shpak, V. Skorokhod, et al. (Springer), 459–465. [Internet]. doi:10.1007/978-1-4020-5514-0_57
  • Novoselova, I. A., Oliynyk, N. F., Voronina, A. B., and Volkov, S. V. (2008). Electrolytic generation of nano-scale carbon phases with framework structures in molten salts on metal cathodes. Z. Naturforsch A Phys. Sci. 63, 467–474. doi:10.1515/zna-2008-7-814
  • Oloman, C., and Li, H. (2008). Electrochemical processing of carbon dioxide. ChemSusChem 1, 385. doi:10.1002/cssc.200800015
  • Otake, K., Kinoshita, H., Kikuchi, T., and Suzuki, R. O. (2013). CO2 gas decomposition to carbon by electro-reduction in molten salts. Electrochim. Acta 100, 293–299. doi:10.1016/j.electacta.2013.02.076
  • Ozkan, A., Dufour, T., Arnoult, G., De Keyzer, P., Bogaerts, A., and Reniers, F. (2015). CO2-CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. J. CO2 Utilization. 9, 74–81. doi:10.1016/j.jcou.2015.01.002
  • Peelen, W. H., Hemmes, K., and de Wit, J. H. (1997). CO2 reduction in molten 62/38 mole% Li/K carbonate mixture. Electrochim. Acta 43, 763–769. doi:10.1016/S0013-4686(97)00141-2
  • Pointon, K. D., Lakerman, B., Irvine, J. T. S., Bradley, J., and Jain, S. (2006). The development of a carbon air semi fuel cell. J. Power Sources 162, 750–756. doi:10.1016/j.jpowsour.2005.07.023
  • Rees, N. V., and Compton, R. G. (2011). Electrochemical CO2 sequestration in ionic liquids; a perspective (minireview). Energy Environ. Sci. 4, 403–408. doi:10.1039/C0EE00580K
  • Sangster, J. M., and Pelton, A. D. (1987). “Critical Coupled Evaluation of Phase Diagrams and Thermodynamic Properties of Binary and Ternary Alkali Salts Systems,” in Special Report to the Phase Equilibria Program (Westerville, OH: American Ceramic Society), 4–231.