Jump to content

Page:First six books of the elements of Euclid 1847 Byrne.djvu/61

From Wikisource
This page has been proofread, but needs to be validated.
BOOK I. PROP. XXVI. THEOR.
27

but = (hyp.)

and therefore = which is absurd; hence neither of the sides and is greater than the other; and ∴ they are equal;

= , and = , (pr. 4.).


CASE II.

Again, let = which lie opposite the equal angles and . If it be possible, let > , then take = , draw . Then in and we have = ,

= and = ,

= (pr. 4.)

but = (hyp.)

= which is absurd (pr. 16.).

Consequently, neither of the sides or is greater than the other, hence they must be equal. It follows (by pr. 4.) that the triangles are equal in all respects.

Q. E. D.