N a right angled triangle the ſquare on the hypotenuſe is equal to the ſum of the ſquares of the ſides, ( and ).
On , and deſcribe ſquares, (pr. 46.)
Draw ∥ {\displaystyle \parallel } (pr. 31)
alſo draw and .
= {\displaystyle =} ,
To each add ∴ {\displaystyle \therefore } = {\displaystyle =} ,
= {\displaystyle =} and = {\displaystyle =} ;
∴ {\displaystyle \therefore } = {\displaystyle =}
Again, becauſe ∥ {\displaystyle \parallel }