F the ſquare of one ſide () of a triangle is equal to the ſquares of the other two ſides ( and ), the angle ( ) ſubtended by that ſide is a right angle.
Draw ⊥ {\displaystyle \perp } and = {\displaystyle =} (prs.11.3.)
and draw alſo.
Since = {\displaystyle =} (conſt.)
2 = {\displaystyle ^{2}=} 2 {\displaystyle ^{2}} ;
∴ {\displaystyle \therefore } 2 + {\displaystyle ^{2}+} 2 = {\displaystyle ^{2}=} 2 + {\displaystyle ^{2}+} 2 {\displaystyle ^{2}} ,
but 2 + {\displaystyle ^{2}+} 2 = {\displaystyle ^{2}=} 2 {\displaystyle ^{2}} (pr. 47.),
and 2 + {\displaystyle ^{2}+} 2 = {\displaystyle ^{2}=} 2 {\displaystyle ^{2}} (hyp.)
∴ {\displaystyle \therefore } 2 = {\displaystyle ^{2}=} 2 {\displaystyle ^{2}} ,
∴ {\displaystyle \therefore } = {\displaystyle =} ;
and ∴ {\displaystyle \therefore } = {\displaystyle =} (pr. 8.),
conſequently is a right angle.
Q. E. D.