These differentiations seem to me to be useful for enabling us to characterise the present day position of the electro-dynamics for moving bodies.
H. A. Lorentz has found out the Relativity theorem and has created the Relativity postulate as a hypothesis that electrons and matter suffer contractions in consequence of their motion according to a certain law.
A. Einstein[1] has brought out the point very clearly, that this postulate is not an artificial hypothesis but is rather a new way of comprehending the time-concept which is forced upon us by observation of natural phenomena.
The Principle of Relativity has not yet been formulated for electro-dynamics of moving bodies in the sense characterized by me. In the present essay, while formulating this principle, I shall obtain the fundamental equations for moving bodies in a sense which is uniquely determined by this principle. But it will be shown that none of the forms hitherto assumed for these equations can exactly fit in with this principle.
We would at first expect that the fundamental equations which are assumed by Lorentz for moving bodies would correspond to the Relativity Principle. But it will be shown that this is not the case for the general equations which Lorentz has for any possible, and also for magnetic bodies; but this is approximately the case (if we neglect the square of the velocity of matter in comparison to the velocity of light) for those equations which Lorentz hereafter infers for non-magnetic bodies. But this latter accordance with the relativity principle is due to the fact that the condition of non-magnetisation has been formulated in a way not corresponding to the relativity principle; therefore the accordance is due to the fortuitous compensation of two contradictions to the relativity postulate. But meanwhile enunciation of the Principle in a rigid manner does not signify any contradiction to the hypotheses of Lorentz's molecular theory, but it shall become clear that the assumption of the contraction of the electron in Lorentz's theory must be introduced at an earlier stage than Lorentz has actually done.