(75)
X
x
=
1
2
(
m
x
M
x
−
m
y
M
y
−
m
z
M
z
+
e
x
E
x
−
e
y
E
y
−
e
z
E
z
)
{\displaystyle X_{x}={\frac {1}{2}}({\mathfrak {m}}_{x}{\mathfrak {M}}_{x}-{\mathfrak {m}}_{y}{\mathfrak {M}}_{y}-{\mathfrak {m}}_{z}{\mathfrak {M}}_{z}+{\mathfrak {e}}_{x}{\mathfrak {E}}_{x}-{\mathfrak {e}}_{y}{\mathfrak {E}}_{y}-{\mathfrak {e}}_{z}{\mathfrak {E}}_{z})}
,
X
y
=
m
x
M
y
+
e
y
E
x
,
Y
x
=
m
y
M
x
+
e
x
E
y
{\displaystyle X_{y}={\mathfrak {m}}_{x}{\mathfrak {M}}_{y}+{\mathfrak {e}}_{y}{\mathfrak {E}}_{x},\ Y_{x}={\mathfrak {m}}_{y}{\mathfrak {M}}_{x}+{\mathfrak {e}}_{x}{\mathfrak {E}}_{y}}
, u.s.f.
X
t
=
e
y
M
z
−
e
z
M
y
{\displaystyle X_{t}={\mathfrak {e}}_{y}{\mathfrak {M}}_{z}-{\mathfrak {e}}_{z}{\mathfrak {M}}_{y}}
,
T
x
=
m
z
E
y
−
m
y
E
z
{\displaystyle T_{x}={\mathfrak {m}}_{z}{\mathfrak {E}}_{y}-{\mathfrak {m}}_{y}{\mathfrak {E}}_{z}}
, u.s.f.
T
t
=
1
2
(
m
x
M
x
+
m
y
M
y
+
m
z
M
z
+
e
x
E
x
+
e
y
E
y
+
e
z
E
z
)
{\displaystyle T_{t}={\frac {1}{2}}({\mathfrak {m}}_{x}{\mathfrak {M}}_{x}+{\mathfrak {m}}_{y}{\mathfrak {M}}_{y}+{\mathfrak {m}}_{z}{\mathfrak {M}}_{z}+{\mathfrak {e}}_{x}{\mathfrak {E}}_{x}+{\mathfrak {e}}_{y}{\mathfrak {E}}_{y}+{\mathfrak {e}}_{z}{\mathfrak {E}}_{z})}
,
(76)
L
=
1
2
(
m
x
M
x
+
m
y
M
y
+
m
z
M
z
−
e
x
E
x
−
e
y
E
y
−
e
z
E
z
)
{\displaystyle L={\frac {1}{2}}({\mathfrak {m}}_{x}{\mathfrak {M}}_{x}+{\mathfrak {m}}_{y}{\mathfrak {M}}_{y}+{\mathfrak {m}}_{z}{\mathfrak {M}}_{z}-{\mathfrak {e}}_{x}{\mathfrak {E}}_{x}-{\mathfrak {e}}_{y}{\mathfrak {E}}_{y}-{\mathfrak {e}}_{z}{\mathfrak {E}}_{z})}
,
These quantities are all real. In the theory for bodies at rest, the combinations (
X
x
,
X
y
,
X
z
,
Y
x
,
Y
y
,
Y
z
,
Z
x
,
Z
y
,
Z
z
{\displaystyle X_{x},\ X_{y},\ X_{z},\ Y_{x},\ Y_{y},\ Y_{z},\ Z_{x},\ Z_{y},\ Z_{z}}
are known as Maxwell 's Stresses",
T
x
,
T
y
,
T
z
{\displaystyle T_{x},\ T_{y},\ T_{z}}
are known as the Poynting's Vector,
T
t
{\displaystyle T_{t}}
as the electromagnetic energy-density, and L as the Langrangian function.
On the other hand, by multiplying the alternating matrices of f and F , we obtain
(77)
F
∗
f
∗
=
|
−
S
11
−
L
,
−
S
12
,
−
S
13
,
−
S
14
−
S
21
,
−
S
22
−
L
,
−
S
23
,
−
S
23
−
S
31
,
−
S
32
,
−
S
33
−
L
,
−
S
34
−
S
41
,
−
S
42
,
−
S
43
,
−
S
44
−
L
|
{\displaystyle F^{*}f^{*}=\left|{\begin{array}{llll}-S_{11}-L,&-S_{12},&-S_{13},&-S_{14}\\-S_{21},&-S_{22}-L,&-S_{23},&-S_{23}\\-S_{31},&-S_{32},&-S_{33}-L,&-S_{34}\\-S_{41},&-S_{42},&-S_{43},&-S_{44}-L\end{array}}\right|}
and hence, we can put
(78)
f
F
=
S
−
L
,
F
∗
f
∗
=
−
S
−
L
{\displaystyle fF=S-L,\ F^{*}f^{*}=-S-L}
,
where by L , we mean L -times the unit matrix, i.e . the matrix with elements
|
L
e
h
k
|
(
e
h
h
=
1
,
e
h
k
=
0
,
h
≷
k
h
,
k
=
1
,
2
,
3
,
4
)
{\displaystyle \left|Le_{hk}\right|\ \left({\begin{array}{c}e_{hh}=1,\ e_{hk}=0,\ h\gtrless k\\h,k=1,2,3,4\end{array}}\right)}
Since here
S
L
=
L
S
{\displaystyle SL=LS}
, we deduce that,
F
∗
f
∗
f
F
=
(
−
S
−
L
)
(
S
−
L
)
=
−
S
S
+
L
2
{\displaystyle F^{*}f^{*}fF=(-S-L)(S-L)=-SS+L^{2}}
,
and find, since
f
∗
f
=
D
e
t
1
2
f
,
F
∗
F
=
D
e
t
1
2
F
{\displaystyle f^{*}f=Det^{\frac {1}{2}}f,\ F^{*}F=Det{\frac {1}{2}}F}
, we arrive at the interesting conclusion
(79)
S
S
=
L
2
−
D
e
t
1
2
f
D
e
t
1
2
F
{\displaystyle SS=L^{2}-Det^{\frac {1}{2}}fDet^{\frac {1}{2}}F}
,
i.e. the product of the matrix S into itself can be expressed as the multiple of a unit matrix — a matrix in which all the elements except those in the principal diagonal are zero, the elements in the principal diagonal are all equal