In consequence of this condition, the integral (7) taken over the whole range of the sickle, varies on account of the displacement as a definite function
N
+
δ
N
{\displaystyle {\mathsf {N}}+\delta {\mathsf {N}}}
of
ϑ
{\displaystyle \vartheta }
, and we may call this function
N
+
δ
N
{\displaystyle {\mathsf {N}}+\delta {\mathsf {N}}}
as the mass action of the virtual displacement.
If we now introduce the method of writing with indices, we shall have
(9)
d
(
x
h
+
δ
x
h
)
=
d
x
h
+
∑
k
∂
δ
x
h
∂
x
k
d
x
k
+
∂
δ
x
h
∂
ϑ
d
ϑ
(
k
=
1
,
2
,
3
,
4
h
=
1
,
2
,
3
,
4
)
{\displaystyle d(x_{h}+\delta x_{h})=dx_{h}+{\underset {k}{\sum }}{\frac {\partial \delta x_{h}}{\partial x_{k}}}dx_{k}+{\frac {\partial \delta x_{h}}{\partial \vartheta }}d\vartheta \qquad \left({\begin{array}{c}k=1,2,3,4\\h=1,2,3,4\end{array}}\right)}
.
Now on the basis of the remarks already made, it is clear that the value of
N
+
δ
N
{\displaystyle {\mathsf {N}}+\delta {\mathsf {N}}}
, when the value of the parameter is
ϑ
{\displaystyle \vartheta }
, will be: —
(10)
N
+
δ
N
=
∫
∫
∫
∫
v
d
(
τ
+
δ
τ
)
d
τ
d
x
d
y
d
z
d
t
{\displaystyle {\mathsf {N}}+\delta {\mathsf {N}}=\int \int \int \int v{\frac {d(\tau +\delta \tau )}{d\tau }}dx\ dy\ dz\ dt}
,
the integration extending over the whole sickle
d
(
τ
+
δ
τ
)
{\displaystyle d(\tau +\delta \tau )}
, where
d
(
τ
+
δ
τ
)
{\displaystyle d(\tau +\delta \tau )}
denotes the magnitude, which is deduced from
−
(
d
x
1
+
d
δ
x
1
)
2
−
(
d
x
2
+
d
δ
x
2
)
2
−
(
d
x
3
+
d
δ
x
3
)
2
−
(
d
x
4
+
d
δ
x
4
)
2
{\displaystyle {\sqrt {-(dx_{1}+d\delta x_{1})^{2}-(dx_{2}+d\delta x_{2})^{2}-(dx_{3}+d\delta x_{3})^{2}-(dx_{4}+d\delta x_{4})^{2}}}}
by means of (9) and
d
x
1
=
w
1
d
τ
,
d
x
2
=
w
2
d
τ
,
d
x
3
=
w
3
d
τ
,
d
x
4
=
w
4
d
τ
,
d
ϑ
=
0
{\displaystyle dx_{1}=w_{1}d\tau ,\ dx_{2}=w_{2}d\tau ,\ dx_{3}=w_{3}d\tau ,\ dx_{4}=w_{4}d\tau ,\ d\vartheta =0}
therefore: —
(11)
d
(
τ
+
δ
τ
)
d
τ
=
−
∑
h
(
w
h
+
∑
k
∂
δ
x
h
∂
x
k
w
k
)
2
(
k
=
1
,
2
,
3
,
4
h
=
1
,
2
,
3
,
4
)
{\displaystyle {\frac {d(\tau +\delta \tau )}{d\tau }}={\sqrt {-{\underset {h}{\sum }}\left(w_{h}+{\underset {k}{\sum }}{\frac {\partial \delta x_{h}}{\partial x_{k}}}w_{k}\right)^{2}}}\left({\begin{array}{c}k=1,2,3,4\\h=1,2,3,4\end{array}}\right)}
.
We shall now subject the value of the differential quotient
(12)
(
d
(
N
+
δ
N
)
d
ϑ
)
(
ϑ
=
0
)
{\displaystyle \left({\frac {d({\mathsf {N}}+\delta {\mathsf {N}})}{d\vartheta }}\right)_{(\vartheta =0)}}
to a transformation. Since each
δ
x
h
{\displaystyle \delta x_{h}}
, as a function of
x
1
,
x
2
,
x
3
,
x
4
,
ϑ
{\displaystyle x_{1},\ x_{2},\ x_{3},\ x_{4},\ \vartheta }
vanishes for the zero-value of the paramater
ϑ
{\displaystyle \vartheta }
, so in general
∂
δ
x
h
∂
x
k
=
0
{\displaystyle {\frac {\partial \delta x_{h}}{\partial x_{k}}}=0}
for
ϑ
=
0
{\displaystyle \vartheta =0}
.
Let us now put
(13)
(
∂
δ
x
h
∂
ϑ
)
ϑ
=
0
=
ξ
h
(
h
=
1
,
2
,
3
,
4
)
{\displaystyle \left({\frac {\partial \delta x_{h}}{\partial \vartheta }}\right)_{\vartheta =0}=\xi _{h}\qquad (h=1,2,3,4)}
,
then on the basis of (10) and (11), we have the expression (12):
−
∫
∫
∫
∫
ν
∑
h
w
h
(
∂
ξ
h
∂
x
1
w
1
+
∂
ξ
h
∂
x
2
w
2
+
∂
ξ
h
∂
x
3
w
3
+
∂
ξ
h
∂
x
4
w
4
)
d
x
d
y
d
z
d
t
{\displaystyle -\int \int \int \int \ \nu {\underset {h}{\sum }}w_{h}\left({\frac {\partial \xi _{h}}{\partial x_{1}}}w_{1}+{\frac {\partial \xi _{h}}{\partial x_{2}}}w_{2}+{\frac {\partial \xi _{h}}{\partial x_{3}}}w_{3}+{\frac {\partial \xi _{h}}{\partial x_{4}}}w_{4}\right)dx\ dy\ dz\ dt}
.
for the system
x
1
,
x
2
,
x
3
,
x
4
{\displaystyle x_{1},\ x_{2},\ x_{3},\ x_{4}}
on the boundary of the sickle ,
δ
x
1
,
δ
x
2
,
δ
x
3
,
δ
x
4
{\displaystyle \delta x_{1},\ \delta x_{2},\ \delta x_{3},\ \delta x_{4}}
shall vanish for every value of
ϑ
{\displaystyle \vartheta }