on a few yards of wire, the battery was a single pair of plates, and the electro-magnet was of the elementary sort employed by Moll, and illustrated in the older books. The artist, indeed, was very ignorant of what had been done by other electricians; and Professor Gale was able to enlighten him. When Gale acquainted him with some results in telegraphing obtained by Mr. Barlow, he said he was not aware that anyone had even conceived the notion of using the magnet for such a purpose. The researches of Professor Joseph Henry on the electro-magnet, in 1830, were equally unknown to Morse, until Professor Gale drew his attention to them, and in accordance with the results, suggested that the simple electro-magnet, with a few turns of thick wire which he employed, should be replaced by one having a coil of long thin wire. By this change a much feebler current would be able to excite the magnet, and the recorder would mark through a greater length of line. Henry himself, in 1832, had devised a telegraph similar to that of Morse, and signalled through a mile of wire, by causing the armature of his electro-magnet to strike a bell. This was virtually the first electro-magnetic acoustic telegraph.[1]
The year of the telegraph—1837—was an important one for Morse, as it was for Cooke and Wheatstone. In the privacy of his rooms he had constructed, with his own hands, a model of his apparatus, and fortune began to favour him. Thanks to Professor Gale, he improved the electro-magnet, employed a more powerful battery, and was thus able to work through a much longer line. In February, 1837, the American House of Representatives passed a resolution asking the Secretary of the Treasury to report on the propriety of establishing a system of telegraphs for the United
- ↑ American Journal of Science.