Jump to content

Page:History of botany (Sachs; Garnsey).djvu/559

From Wikisource
This page has been validated.
Chap. III.]
the Movements of Plants.
539

acuteness in attempts at explaining them; to these attempts we shall return in a future page.

A still more universal phenomenon than the vertical growth of stems and roots is the growth of plants generally, and it required as much or even more of the spirit of enquiry to propose the question, whether this growth can be explained by mechanical laws, and what that explanation is. Mariotte touched on this question in 1679, but only incidentally, and supposed that the stretching of the pith, which meant at that time the whole of the parenchymatous tissue, was the cause of the growth of the parts of plants. This idea might have had its origin in the Aristotelian notion that the pith is the seat of the vegetable soul, but Mariotte endeavoured to give physical reasons for it. Hales in his 'Statical Essays' of 1727 went much more minutely into the question of the growth of plants. Following the train of thought in his doctrine of the nutrition of plants, he introduces his observations on their growth with the remark, that plants consist of sulphur, volatile salts, earth, water, and air, the first four of which attract one another, and therefore form the solid, inert part of the substance of plants; the air behaves in a similar manner as long as it is kept by the other substances in a solid condition; but as soon as it is set at liberty it is capable of expansion. On this power of expansion in the air, by which the juices of plants are quickened and strengthened, he builds his mechanical theory of growth, according to which the plastic parts of the plant assume a state of tension, and as the air enters into combination with other substances and so becomes fixed, warmth and movement are excited, and these make the particles of sap assume by degrees a form and shape. These principles supplied his starting-point. To get a clearer idea of the. way in which the growth of the parts of plants proceeds, he made equi-distant punctures in young stalks and leaves, and found that the intervals between them increased by growth more in the younger intervening parts than in the older. In the course of these observations he is