by J. J. Thomson and Lenard of the negative charges emitted by a negatively charged metallic surface under the action of light and of those spontaneously emitted by incandescent bodies also show an identity with the cathode rays. Wehnelt has recently shown that the oxides of the alkaline earths possess in an extraordinary degree this property of spontaneously emitting cathode rays at high temperatures, and furnishes a means of performing, on this particular kind of rays, simple and exact measurements.
Finally, we know that the magnitude of the Zeeman effect, in the case where the spectrum lines considered present the appearance of a normal triplet, leads to the conclusion that the light corresponding to these lines is emitted by negatively electrified centres, present in matter and having the same ratio e/m as the cathode rays.
Moreover, the magnitude of this ratio, one thousand to two thousand times greater than for the hydrogen atom in electrolysis, leads us, as a consequence of the identity of charges established by Townsend, to consider the mass of the cathode corpuscle as one thousand times smaller at least than an atom of hydrogen; a result in perfect agreement with the conception which makes material atoms an agglomeration of electrons of two kinds. On the hypothesis that the mass is entirely of electromagnetic origin, the knowledge of the ratio e/m gives for the electron a sufficiently small radius (10-13 centimeters about) in order to be, conformably to our conception also, negligible in comparison with atomic dimensions.
(35) Flames. The small mass of the cathode corpuscle, and the possibility of separating from matter electrified centres a thousand times smaller than the smallest atom, is confirmed by the mobility of the negative ions in flames. We obtain enormous mobility compared to that observed in gases at ordinary temperatures, and the methods of the kinetic theory of gases permits us to calculate, by means of this experimental mobility, that the movable negative centres in flames have a mass about a thousand times smaller than the hydrogen atom, and should consequently be identical with the cathode corpuscles. At ordinary temperatures the negative ions are less mobile because the cathode corpuscles surround themselves with neutral molecules by simple electrostatic attraction, and form an agglomeration which the feeble agitation allows to remain stable.
VII. Positive Electrons - α Rays
(36) Goldstein Rays. α Rays. Our knowledge of the structure of positive charges is much less advanced than for the negative. Two important cases show us the existence of positively charged particles, besides the positive ions in conducting gases, which at ordinary temperatures consist of an agglomeration of neutral molecules around