Page:LangevinStLouis.djvu/30

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

the life of the atom. There is then no difficulty in conceiving how the enormous evolution of heat by radium can be ascribed to its internal energy.

No atom being free from this loss of energy due to the radiation of the electrons, one ought to expect on this hypothesis of decay a universality of radioactive phenomena, the atoms which we consider as actually stable suffering only an extraordinarily slow waste.

IX. Electric Properties

(42) Polarization. It remains now to show in a few words how the preceding conceptions lend themselves easily to a representation of the principal electric and magnetic properties of matter and make possible for the first time a theory of the disruptive discharge and of metallic conduction.

A common property of all forms of matter is electrostatic polarization arising from the variation of the specific inductive power with the nature of the substance.

This polarization results in a manner quite natural by the modification which an external electric field produces in the motions of the electron which constitute the atom. This modification is caused in the mean by an excess of positive centres on the side where the field tends to displace them and by an excess of negative centres on the opposite side. The system takes then on the average an electrostatic polarization.

(43) Corpuscular Dissociations. If the electric field becomes sufficiently intense, as, for example, during the passage of one of those brief pulsations which constitute the Roentgen rays, or during the passage through the atomic structure of an α or β particle of very great velocity, the modification produced may be very great, a cathode corpuscle may be separated from the structure which remains positively charged; there is produced thus a corpuscular dissociation which explains the conductivity acquired by insulating mediums under the action of Roentgen or Becquerel rays, and which manifests itself especially in gases, where the electrified centres thus freed can move more easily, although by electrostatic attraction on the neutral molecules, electrically polarizable, they surround themselves with a group of molecules which accompany them during their motion.

It seems well established that the negative ions in particular, also produced in a gas, have a cathode corpuscle for centre, since the penetration of cathode rays into a gas produces in it negative ions identical with those of Roentgen rays, at least from the point of view of their mobility or of their power of condensing supersaturated water vapor. It seems, nevertheless, important to make sure, by measuring the mobility of ions produced by different causes in the interior of gases,