Page:LarmorDrift.djvu/1

From Wikisource
Jump to navigation Jump to search
This page has been validated.

IN a recent paper by Prof. D. B. Brace (Phil. Mag. April 1904, p. 318) the author removes by very refined experimenting all trace of doubt from Lord Rayleigh's conclusion that motion of transparent solids through the æther does not induce any double refraction, even to the second order of the ratio of the velocity of the translation to that of radiation; but he infers from this the non-existence of the second-order deformation of the solid due to its translation, suggested by FitzGerald and by H. A. Lorentz to account for Michelson's earlier demonstrated absence of effect on optical interferences over long paths in free aæther. As he remarks, it had previously been suggested by Lord Rayleigh that such an inference might possibly follow from this result. The object of this note is to explain that the inference in question is the opposite to that which I still hold to be the natural result of the theory of the motion of molecular aggregates through æther, as hitherto developed.[1]

The argument of Prof. Brace proceeds on the basis that the whole effect of the convection through the æther is to introduce new forces between the molecules, causing the shrinkage aforesaid along the direction of convection; and it can be readily granted that if this were all, double refraction must result. But both the line of argument suggested as probable by Lorentz,[2] and the molecular analysis offered by me some years later,[3] proceed by comparing a system shrunk in the FitzGerald-Lorentz manner and convected through the æther, with the same system unshrunk and at rest, and finding a complete correspondence between them as regards the states and activities of the individual molecules. As the argument is somewhat complex and has been misunderstood, a brief re-statement of the result may prove useful.

We are to compare the field of physical activity of a system of molecules at rest, with the field of the identically same configuration of molecules in uniform translatory motion through æther. If small quantities of the order of the square of the ratio of the velocity of convection to that of radiation (v/c) are neglected, the Maxwellian physical equations for the

  1. Æther and Matter, Camb. Univ. Press, 1900, chapter xi.
  2. 'Versuch einer Theorie,' 1895, §§ 91-2, translated in part in 'Æther and Matter,' p. 186.
  3. Loc. cit.