Page:LarmorDrift.djvu/5

From Wikisource
Jump to navigation Jump to search
This page has been validated.

Any rival theory must on the threshold give an account of the Michelson null optical result, of Trouton's null electric result for convection of a charged condenser,[1] and of Rayleigh's absence of double refraction now rendered thoroughly secure by Brace.[2]

As electrons are already held to be a reality on various grounds, theoretical and experimental, it would appear therefore that there is much to be said for a benevolent attitude to the proposition that all the interactions of matter, so far as the laws of physics and chemistry extend, are to be described as phenomena occurring in and through the aether, and thus differentiated from the more recondite world of vital growth and change which they make manifest to our senses. This principle does not yet, so far as one can see, stand in the way of any other branch of physical science, while it accounts for the very remarkable absence of influence of the earth's motion through space on the most sensitive phenomena, and is almost led up to thereby.


It is pertinent to the present subject to refer to Mr. Sutherland's recent remarks (Phil. Mag. April, p. 406) on the magnetic effect of electric convection, in relation to the mysterious action of a dielectric varnish that has been announced by Crémieu and Pender. The discrepancy in the conservation of energy, there described, applied to the domain of electric polarization, is too startling to have been overlooked by the current theory;[3] and accordingly closer consideration gets rid of the difficulty. When an electron e is transferred in an electric field from a place where the potential is V1 to a place where it is V2, the fores acting on it, being e multiplied by the gradient of V, does work equal to e(V1-V2). When, however, the electron is embedded in a piece of dielectric matter which is so transferred, the force acting on the electron itself is diminished by the presence of the surrounding polarized matter, and so the work done on the electron is less than before: but now the electric polarization induced by the electron in this surrounding matter is also acted on by the electric field, and if we add the work done on it during the movement, we shall get the same total work as before for the system that is moved, and there will be no discrepancy to be otherwise explained.

Cambridge, April 7, 1904.

  1. Phil. Trans. 1903.
  2. The null influence on optical rotation, observed by Rayleigh, counts here as a first-order effect.
  3. Phil. Trans, 1897 A, p. 248, and 'AEther and Matter,' 1900, Appendix A.