Jump to content

Page:Lavoisier-ElementsOfChemistry.pdf/117

From Wikisource
This page has been proofread, but needs to be validated.

produced by the calcination itself becomes confounded with that proceeding from the furnace. I might add the respirable part of the air, or rather its base, in entering into combination with the mercury, does not part with the all the caloric which it contained, but still retains a part of it after forming the new compound; but the discussion of this point, and its proofs from experiment, do not belong to this part of our subject.

It is, however, easy to render this disengagement of caloric and light evident to the senses, by causing the decomposition of air to take place in a more rapid manner. And for this purpose, iron is excellently adapted, as it possesses a much stronger affinity for the base of respirable air than mercury. The elegant experiment of Mr Ingenhouz, upon the combustion of iron, is well known. Take a piece of fine iron wire, twisted into a spiral,

Plate IV. Fig. 17.
Plate IV. Fig. 17.

(BC, Plate IV. Fig. 17.) fix one of its extremities B into the cork A, adapted to the neck of the bottle DEFG, and fix to the other extremity of the wire C, a small morsel of tinder. Matters being thus prepared, fill the bottle DEFG with air deprived of its mephitic part; then light the tinder, and introduce it quickly with the wire upon which it is fixed, into the bottle which you stop up with the cork A, as is shown in the figure (17 Plate IV.) The instant the