LECTURE VI
ANALYSIS OF THE ACTION OF MAGNETISM ON LIGHT WAVES BY THE INTERFEROMETER AND THE ECHELON
A little over a year ago the scientific world was startled by the announcement that Professor Zeeman had discovered a new effect of magnetism on light. The experiment that he tried may be briefly described in the following way: If we place a sodium flame in front of the slit of a spectroscope, we get in the field of view a bright double line. If the flame is placed between the poles of a powerful electro-magnet, it is found that the lines are very much broadened; at least this was the way in which the announcement of the discovery was first made. It may be mentioned that a somewhat similar observation was made by M. Fievez a long time before. He found that the sodium lines in the spectrum were modified by the magnetic field, but not quite in the way that Zeeman announced; instead of the lines being broadened, he thought that each separate sodium line was doubled or quadrupled. It seems that, long before this, the experiment had actually been tried by Faraday, who, guided by theoretical reasons, conjectured that there should be some effect produced by a powerful magnetic field upon radiations.
The only reason why Faraday did not succeed in observing what Fievez and Zeeman observed afterward was that the spectroscopic means at his disposal at the time were far from being sufficiently powerful. The effect is very small at best. The distance between the sodium lines being taken as a kind of unit for reference, the separate sodium lines, as was shown in a preceding lecture, have a width of about one-hundredth of the distance between the two. The broadening, or
107