ferometer and noting the clearness of the fringes as the difference of the path varies. We then construct a curve which shall represent this variation of visibility on a more or less arbitrary scale, and compare it with one of the known forms, such as those shown in Fig. 58. There is, however, a more direct process. The explanation of this process involves so much mathematics that I shall not undertake it here. It will be sufficient to state that the harmonic analyzer cannot only be used as has been described, but is also capable of analyzing such visibility curves. Thus, if we introduce into the instrument the curve corresponding to the visibility curve, by making the distances of the connecting rods from the axis proportional to the ordinates of the visibility curve, and then turn the machine, it produces directly a very close approximation to the character of the source. For example, take curve 2 of Fig. 58. By its derivation we know that it corresponds to a double source each of whose components is absolutely homogeneous. If we introduce this curve, or rather the envelope of it, into the machine, it will give a resultant which represents the character of the source to a close degree of approximation. The actual result is shown in Fig. 59, in which the ordinates represent the intensity of the light. We thus see that the machine can operate in both ways, i. e., that it can add up a series of simple harmonic curves and give the resultant, which in the case before us is the visibility curve, and that it can take the resultant curve and analyze it into its components, which here represent the distribution of the light in the source.
Now the question naturally arises as to how the observations by which the visibility curve is determined are conducted; also as to what units to adopt, and what scale