the body of a snail contracts into its shell when one of its "horns" is irritated.
The reflex action of the snail is the result of the presence of a nervous system in that animal. A molecular change takes place in the nerve of the tentacle, is propagated to the muscles by which the body is retracted, and causing them to contract, the act of retraction is brought about. Of course the similarity of the acts does not necessarily involve the conclusion that the mechanism by which they are effected is the same; but it suggests a suspicion of their identity which needs careful testing.
The results of recent inquiries into the structure of the nervous system of animals converge towards the conclusion that the nerve-fibres, which we have hitherto regarded as ultimate elements of nervous tissue, are not such, but are simply the visible aggregations of vastly more attenuated filaments, the diameter of which dwindles down to the limits of our present microscopic vision, greatly as these have been extended by modern improvements of the microscope; and that a nerve is, in its essence, nothing but a linear tract of specially modified protoplasm between two points of an organism — one of which is able to affect the other by means of the communication so established. Hence it is conceivable that even the simplest living being may possess a nervous system. And the question whether plants are provided with a nervous system or not, thus acquires a new aspect, and presents the histologist and physiologist with a problem of extreme difficulty, which must be attacked from a new point of view and by the aid of methods which have yet to be invented.
Thus it must be admitted that plants may be contractile and locomotive; that, while locomotive, their movements may have as much appearance of spontaneity as those of the lowest animals; and that many exhibit actions comparable to those which are brought about by the agency of a nervous system in animals. And it must be allowed to be possible that further research may reveal the existence of something comparable to a nervous system in plants. So that I know not where we can hope to find any absolute distinction between animals and plants, unless we return to their mode of nutrition, and inquire whether certain differences of a more occult character than those imagined to exist by Cuvier, and which certainly hold good for the vast majority of animals and plants, are of universal application.
A bean may be supplied with water in which salts of ammonia and certain other mineral salts are dissolved in due proportion; with atmospheric air containing its ordinary minute dose of carbonic acid; and with nothing else but sunlight and heat. Under these circumstances, unnatural as they are, with proper management, the bean will thrust forth its radicle and its plumule; the former will grow down into roots, the latter grow up into the stem and leaves of a vigorous bean-plant; and this plant will, in due time, flower and produce its crop of beans, just as if it were grown in the garden or in the field.
The weight of the nitrogenous protein compounds, of the oily, starchy, saccharine and woody substances contained in the full-grown plant and its seed, will be vastly greater than the weight of the same substances contained in the bean from which it sprang. But nothing has been supplied to the bean save water, carbonic acid, ammonia, potash, lime, iron, and the like, in combination with phosphoric, sulphuric and other acids. Neither protein, nor fat, nor starch, nor sugar, nor any substance in the slightest degree resembling them have formed part of the food of the bean. But the weights of the carbon, hydrogen, oxygen, nitrogen, phosphorus, sulphur, and other elementary bodies contained in the bean-plant, and in the seeds which it produces, are exactly equivalent to the weights of the same elements which have disappeared from the materials supplied to the bean during its growth. Whence it follows that the bean has taken in only the raw materials of its fabric and has manufactured them into bean-stuffs.
The bean has been able to perform this great chemical feat by the help of its green colouring matter, or chlorophyll, which, under the influence of sunlight, has the marvellous power of decomposing carbonic acid, setting free the oxygen and laying hold of the carbon which it contains. In fact the bean obtains two of the absolutely indispensable elements of its substance from two distinct sources; the watery solution, in which its roots are plunged, contains nitrogen but no carbon; the air, to which the leaves are exposed, contains carbon, but its nitrogen is in the state of a free gas, in which condition the bean can make no use of it[1] and the chlorophyll is the apparatus by which the carbon is extracted from the atmospheric carbonic acid — the leaves being the chief
- ↑ I purposely assume that the air with which the bean is supplied in the case stated contains no ammoniacal salts.