of things which can be traced almost everywhere, to a greater or less extent, throughout the whole field of our experience. Fires, shipwrecks, yields of harvest, births, marriages, suicides; it scarcely seems to matter what feature we single out for observation[1]. The irregularity of the single instances diminishes when we take a large number, and at last seems for all practical purposes to disappear.
In speaking of the effect of the average in thus diminishing the irregularities which present themselves in the details, the attention of the student must be prominently directed to the point, that it is not the absolute but the relative irregularities which thus tend to diminish without limit. This idea will be familiar enough to the mathematician, but to others it may require some reflection in order to grasp it clearly. The absolute divergences and irregularities, so far from diminishing, show a disposition to increase, and this (it may be) without limit, though their relative importance shows a corresponding disposition to diminish without limit. Thus in the case of tossing a penny, if we take a few throws, say ten, it is decidedly unlikely that there should be a difference of six between the numbers of heads and tails; that is, that
- ↑ The following statistics will give a fair idea of the wide range of experience over which such regularity is found to exist: “As illustrations of equal amounts of fluctuation from totally dissimilar causes, take the deaths in the West district of London in seven years (fluctuation 13•66), and offences against the person (fluctuation 13•61); or deaths from apoplexy (fluctuation 5•54), and offences against property, without violence (fluctuation 5•48); or students registered at the College of Surgeons (fluctuation 1•85), and the number of pounds of manufactured tobacco taken for home consumption (fluctuation 1•89); or out-door paupers (fluctuation 3•45) and tonnage of British vessels entered in ballast (fluctuation 3•43), &c.” [Extracted from a paper in the Journal of the Statistical Society, by Mr Guy, March, 1858; the ‘fluctuation’ here given is a measure of the amount of irregularity, that is of departure from the average, estimated in a way which will be described hereafter.]