Page:Logic of Chance (1888).djvu/50

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
20
On certain kinds of Groups or Series.
[chap. i.

than that number of times. Here then is a series formed by a succession of throws. We will assume,—what many persons will consider to admit of demonstration, and what certainly experience confirms within considerable limits,— that the rarity of these ‘runs’ of the same face is in direct proportion to the amount I receive for them when they do occur. In other words, if we regard only the occasions on which I receive payments, we shall find that every other time I get one pound, once in four times I get two pounds, once in eight times four pounds, and so on without any end. The question is then asked, what ought I to pay for this privilege? At the risk of a slight anticipation of the results of a subsequent chapter, we may assume that this is equivalent to asking, what amount paid each time would on the average leave me neither winner nor loser? In other words, what is the average amount I should receive on the above terms? Theory pronounces that I ought to give an infinite sum: that is, no finite sum, however great, would be an adequate equivalent. And this is really quite intelligible. There is a series of indefinite length before me, and the longer I continue to work it the richer are my returns, and this without any limit whatever. It is true that the very rich hauls are extremely rare, but still they do come, and when they come they make it up by their greater richness. On every occasion on which people have devoted themselves to the pursuit in question, they made acquaintance, of course, with but a limited portion of this series; but the series on which we base our calculation is unlimited; and the inferences usually drawn as to the sum which ought in the long run to be paid for the privilege in question are in perfect accordance with this supposition.

The common form of objection is given in the reply, that so far from paying an infinite sum, no sensible man would