part and organ, and so on. Some of the most extensive of these express the heights of 25,000 Federal soldiers from the Army of the Potomac, and the circumferences of the chests of 5738 Scotch militia men taken many years ago. Those who wish to consult a large repertory of such statistics cannot be referred to any better sources than to these and other works by the same author[1].
Interesting and valuable, however, as are Quetelet's statistical investigations (and much of the importance now deservedly attached to such enquiries is, perhaps, owing more to his efforts than to those of any other person), I cannot but feel convinced that there is much in what he has written upon the subject which is erroneous and confusing as regards the foundations of the science of Probability, and the philosophical questions which it involves. These errors are not by any means confined to him, but for various reasons they will be better discussed in the form of a criticism of his explicit or implicit expression of them, than in any more independent way.
§3. In the first place then, he always, or almost always, assumes that there can be but one and the same law of arrangement for the results of our observations, measurements, and so on, in these statistical enquiries. That is, he assumes that whenever we get a group of such magnitudes clustering about a mean, and growing less frequent as
- ↑ As regards later statistics on the same subject the reader can refer to the Reports of the Anthropometrical Committee of the British Association (1879, 1880, 1881, 1883;—especially this last). These reports seem to me to represent a great advance on the results obtained by Quetelet, and fully to justify the claim of the Secretary (Mr C. Roberts) that their statistics are "unique in range and numbers". They embrace not merely military recruits—like most of the previous table—but almost every class and age, and both sexes. Moreover they refer not only to stature but to a number of other physical characteristics.