mine it by experience has not been made sufficiently often to enable us to ascertain it; but upon general grounds it seems by no means certain that it would follow the so-called exponential law. Be this however as it may, it is rather a licence of language to talk as if nature had been at work in the same way as one of us; aiming (ineffectually for the most part) at a given result, that is at producing a man endowed with a certain stature, proportions, and so on, who might therefore be regarded as the typical man.
§ 14. Stated as above, namely, that there is a fixed invariable human type to which all individual specimens of humanity may be regarded as having been meant to attain, but from which they have deviated in one direction or another, according to a law of deviation capable of à priori determination, the doctrine is little else than absurd. But if we look somewhat closer at the facts of the case, and the probable explanation of these facts, we may see our way to an important truth. The facts, on the authority of Quetelet's statistics (the great interest and value of which must be frankly admitted), are very briefly as follows: if we take any element of our physical frame which admits of accurate measurement, say the height, and determine this measure in a great number of different individuals belonging to any tolerably homogeneous class of people, we shall find that these heights do admit of an orderly arrangement about a mean, after the fashion which has been already repeatedly mentioned. What is meant by a homogeneous class? is a pertinent and significant enquiry, but applying this condition to any simple cases its meaning is readily stated. It implies that the mean in question will be different according to the nationality of the persons under measurement. According to Quetelet[1], in the case of Englishmen the mean is about
- ↑ He scarcely, however, professes to give these as an accurate measure