derivatives and we shall determine the variation it undergoes by arbitrarily chosen variations
δ
g
a
b
{\displaystyle \delta g_{ab}}
, these latter being continuous functions of the coordinates. We have evidently
δ
Q
=
∑
(
a
b
)
∂
Q
∂
g
a
b
δ
g
a
b
+
∑
(
a
b
e
)
∂
Q
∂
g
a
b
,
e
δ
g
a
b
,
e
+
∑
(
a
b
e
f
)
δ
Q
∂
g
a
b
,
e
f
δ
g
a
b
,
e
f
{\displaystyle \delta Q=\sum (ab){\frac {\partial Q}{\partial g_{ab}}}\delta g_{ab}+\sum (abe){\frac {\partial Q}{\partial g_{ab,e}}}\delta g_{ab,e}+\sum (abef){\frac {\delta Q}{\partial g_{ab,ef}}}\delta g_{ab,ef}}
By means of the equations
δ
g
a
b
,
e
f
=
∂
∂
x
f
δ
g
a
b
,
e
{\displaystyle \delta g_{ab,ef}={\frac {\partial }{\partial x_{f}}}\delta g_{ab,e}}
and
δ
g
a
b
,
e
=
∂
∂
x
e
δ
g
a
b
{\displaystyle \delta g_{ab,e}={\frac {\partial }{\partial x_{e}}}\delta g_{ab}}
this may be decomposed into two parts
d
Q
=
δ
1
Q
+
δ
2
Q
{\displaystyle dQ=\delta _{1}Q+\delta _{2}Q}
(42)
namely
δ
1
Q
=
∑
(
a
b
)
{
∂
Q
∂
g
a
b
−
∑
(
e
)
∂
∂
x
e
∂
Q
∂
g
a
b
,
e
+
∑
(
e
f
)
∂
2
∂
x
e
∂
x
f
∂
Q
∂
g
a
b
,
e
f
}
δ
g
a
b
{\displaystyle \delta _{1}Q=\sum (ab)\left\{{\frac {\partial Q}{\partial g_{ab}}}-\sum (e){\frac {\partial }{\partial x_{e}}}{\frac {\partial Q}{\partial g_{ab,e}}}+\sum (ef){\frac {\partial ^{2}}{\partial x_{e}\partial x_{f}}}{\frac {\partial Q}{\partial g_{ab,ef}}}\right\}\delta g_{ab}}
(43)
δ
2
Q
=
∑
(
a
b
e
)
∂
Q
∂
x
e
(
∂
Q
∂
g
a
b
,
e
δ
g
a
b
)
+
∑
(
a
b
e
f
)
∂
∂
x
f
(
∂
Q
∂
g
a
b
,
e
f
δ
g
a
b
,
e
)
−
−
∑
(
a
b
e
f
)
∂
∂
x
e
{
∂
∂
x
f
(
∂
Q
∂
g
a
b
,
e
f
)
δ
g
a
b
}
{\displaystyle {\begin{array}{c}\delta _{2}Q=\sum (abe){\frac {\partial Q}{\partial x_{e}}}\left({\frac {\partial Q}{\partial g_{ab,e}}}\delta g_{ab}\right)+\sum (abef){\frac {\partial }{\partial x_{f}}}\left({\frac {\partial Q}{\partial g_{ab,ef}}}\delta g_{ab,e}\right)-\\\\-\sum (abef){\frac {\partial }{\partial x_{e}}}\left\{{\frac {\partial }{\partial x_{f}}}\left({\frac {\partial Q}{\partial g_{ab,ef}}}\right)\delta g_{ab}\right\}\end{array}}}
(44)
The last equation shows that
∫
δ
2
Q
d
S
=
0
{\displaystyle \int \delta _{2}QdS=0}
(45)
if the variations
δ
g
a
b
{\displaystyle \delta g_{ab}}
and their first derivatives vanish at the boundary of the domain of integration.
§ 35. Equations of the same form may also be found if
Q
{\displaystyle Q}
is expressed in one of the two other ways mentioned in § 33. If e.g. we work with the quantities
g
a
b
{\displaystyle {\mathfrak {g}}^{ab}}
we shall find
(
δ
Q
)
=
(
δ
1
Q
)
+
(
δ
2
Q
)
{\displaystyle (\delta Q)=\left(\delta _{1}Q\right)+\left(\delta _{2}Q\right)}
where
(
δ
1
Q
)
{\displaystyle \left(\delta _{1}Q\right)}
and
(
δ
2
Q
)
{\displaystyle \left(\delta _{2}Q\right)}
are directly found from (43) and (44) by replacing
g
a
b
{\displaystyle g_{ab}}
,
g
a
b
,
e
{\displaystyle g_{ab,e}}
,
g
a
b
,
e
f
{\displaystyle g_{ab,ef}}
,
δ
g
a
b
{\displaystyle \delta g_{ab}}
and
δ
g
a
b
,
e
{\displaystyle \delta g_{ab,e}}
etc. by
g
a
b
{\displaystyle {\mathfrak {g}}^{ab}}
,
g
a
b
,
e
{\displaystyle {\mathfrak {g}}^{ab,e}}
etc. If the variations chosen in the two cases correspond to each other we shall have of course
(
d
Q
)
=
δ
Q
{\displaystyle (dQ)=\delta Q}
Moreover we can show that the equalities
(
δ
1
Q
)
=
δ
1
Q
,
(
δ
2
Q
)
=
δ
2
Q
{\displaystyle \left(\delta _{1}Q\right)=\delta _{1}Q,\ \left(\delta _{2}Q\right)=\delta _{2}Q}
exist separately.[ 1]
↑ Suppose that at the boundary of the domain of integration
δ
g
a
b
=
0
{\displaystyle \delta g_{ab}=0}
and
δ
g
a
b
,
e
=
0
{\displaystyle \delta g_{ab,e}=0}
. Then we have also
δ
g
a
b
=
0
{\displaystyle \delta {\mathfrak {g}}^{ab}=0}
and
δ
g
a
b
,
e
=
0
{\displaystyle \delta {\mathfrak {g}}^{ab,e}=0}
, so that
∫
(
δ
2
Q
)
d
S
=
0
,
∫
δ
2
Q
d
S
=
0
{\displaystyle \int \left(\delta _{2}Q\right)dS=0,\ \int \delta _{2}QdS=0}
and from