per second of the revolutions. It is known that the centrifugal velocity increases as the square of that number, and the velocity of displacement grows as the first power. After different attempts I fixed the diameter at 2 m.: because since the small tubes with the mercury weigh 35 gr., the centrifugal force that excites them at a velocity of only 14 revolutions per second (corresponding to nearly 90 m. of peripheral velocity) amounts to 30 kg.
That is nearly the highest point of capacity of charge to which the glass material can be brought. In my experiments the glass tubes still broke very often, although allowing a sufficient interval of time for the observation and measures.
In respect to the resistance of air, it has been reduced to the minimum by using fine steel wires of high mechanical resistance as connexions between the tubes and the rotating axle. Notwithstanding the aforesaid conditions of velocity, the apparatus being provided with only two tubes in diametral position, n power of about 5 kw. was necessary. I give now a short description of it. The figure illustrates schematically
the details, not, presenting them on a uniform scale. O is the rotating axle connected with a pulley and strap to a motor with velocity of rotation capable of regulation and inversion, and of the maximum power 10 H.P. Two airless tubes of a