Page:Makers of British botany.djvu/105

From Wikisource
Jump to navigation Jump to search
This page has been validated.
TRANSPIRATION
75

estimating transpiration which have been employed in modern times, namely, (i) weighing, (ii) a rough sort of potometer, (iii) enclosing a branch in a glass balloon and collecting the precipitated moisture, the well-known plan followed by various French observers.

He (Vegetable Staticks, p. 51) concluded his balance of loss and gain in transpiring plants by estimating the amount of available water in the soil to a depth of three feet, and calculating how long his sunflower would exist without watering. He further concludes (p. 57) that an annual rainfall (of 22 inches) is "sufficient for all the purposes of nature, in such flat countries as this about Teddington."

He constantly notes small points of interest, e.g. (p. 82) that with cut branches the water absorbed diminishes each day and that the former vigour of absorption may be partly renewed by cutting a fresh surface[1].

He also showed (p. 89) that the transpiration current can flow perfectly well from apex to base when the apical end is immersed in water.

These are familiar facts to us, but we should realise that it is to the industry and ingenuity of Hales that we owe them. In a repetition (p. 90) of the last experiment, we have the first mention of a fact fundamentally important. He took two branches (which with a clerical touch he calls M and N) and having removed the bark from a part of the branch dipped the ends in water, N with the great end downwards, but M upside down. In this way he showed that the bark was not necessary for the absorption or transmission of water[2]. I suspect that one branch was inverted out of respect for the hypothesis of sap-circulation. He perhaps thought that water could travel apically by the wood, but only by the bark in the opposite direction.

Later in his book (pp. 128 and 131) he gives definite arguments against the hypothesis in question.

Next in order (p. 95) comes his well-known experiment on the pressure exerted by peas increasing in size as they imbibe

  1. Compare F. von Höhnel, Bot. Zeititng, 1879, p. 318.
  2. This is also shown by experiment XC, Vegetable Staticks, p. 123.