Page:Mysticism and Logic and Other Essays.djvu/126

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
114
MYSTICISM AND LOGIC

Kant's Transcendental Æsthetic, and suppose we wish to discover what are the elements of the problem and what hope there is of obtaining a solution of them. It will soon appear that three entirely distinct problems, belonging to different studies, and requiring different methods for their solution, have been confusedly combined in the supposed single problem with which Kant is concerned. There is a problem of logic, a problem of physics, and a problem of theory of knowledge. Of these three, the problem of logic can be solved exactly and perfectly; the problem of physics can probably be solved with as great a degree of certainty and as great an approach to exactness as can be hoped in an empirical region; the problem of theory of knowledge, however, remains very obscure and very difficult to deal with. Let us see how these three problems arise.

(1) The logical problem has arisen through the suggestions of non-Euclidean geometry. Given a body of geometrical propositions, it is not difficult to find a minimum statement of the axioms from which this body of propositions can be deduced. It is also not difficult, by dropping or altering some of these axioms, to obtain a more general or a different geometry, having, from the point of view of pure mathematics, the same logical coherence and the same title to respect as the more familiar Euclidean geometry. The Euclidean geometry itself is true perhaps of actual space (though this is doubtful), but certainly of an infinite number of purely arithmetical systems, each of which, from the point of view of abstract logic, has an equal and indefeasible right to be called a Euclidean space. Thus space as an object of logical or mathematical study loses its uniqueness; not only are there many kinds of spaces, but there are an infinity of examples of each kind,