Page:Mysticism and Logic and Other Essays.djvu/75

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE STUDY OF MATHEMATICS
63

emerge as the residue of similarity amid such great apparent diversity. In this way the abstract demonstrations should form but a small part of the instruction, and should be given when, by familiarity with concrete illustrations, they have come to be felt as the natural embodiment of visible fact. In this early stage proofs should not be given with pedantic fullness; definitely fallacious methods, such as that of superposition, should be rigidly excluded from the first, but where, without such methods, the proof would be very difficult, the result should be rendered acceptable by arguments and illustrations which are explicitly contrasted with demonstrations.

In the beginning of algebra, even the most intelligent child finds, as a rule, very great difficulty. The use of letters is a mystery, which seems to have no purpose except mystification. It is almost impossible, at first, not to think that every letter stands for some particular number, if only the teacher would reveal what number it stands for. The fact is, that in algebra the mind is first taught to consider general truths, truths which are not asserted to hold only of this or that particular thing, but of any one of a whole group of things. It is in the power of understanding and discovering such truths that the mastery of the intellect over the whole world of things actual and possible resides; and ability to deal with the general as such is one of the gifts that a mathematical education should bestow. But how little, as a rule, is the teacher of algebra able to explain the chasm which divides it from arithmetic, and how little is the learner assisted in his groping efforts at comprehension! Usually the method that has been adopted in arithmetic is continued: rules are set forth, with no adequate explanation of their grounds; the pupil learns to use the rules blindly,