him, to travel easily over the steps of the more important deductions. In this way a good tone of mind is cultivated, and selective attention is taught to dwell by preference upon what is weighty and essential.
When the separate studies into which mathematics is divided have each been viewed as a logical whole, as a natural growth from the propositions which constitute their principles, the learner will be able to understand the fundamental science which unifies and systematises the whole of deductive reasoning. This is symbolic logic—a study which, though it owes its inception to Aristotle, is yet, in its wider developments, a product, almost wholly, of the nineteenth century, and is indeed, in the present day, still growing with great rapidity. The true method of discovery in symbolic logic, and probably also the best method for introducing the study to a learner acquainted with other parts of mathematics, is the analysis of actual examples of deductive reasoning, with a view to the discovery of the principles employed. These principles, for the most part, are so embedded in our ratiocinative instincts, that they are employed quite unconsciously, and can be dragged to light only by much patient effort. But when at last they have been found, they are seen to be few in number, and to be the sole source of everything in pure mathematics. The discovery that all mathematics follows inevitably from a small collection of fundamental laws is one which immeasurably enhances the intellectual beauty of the whole; to those who have been oppressed by the fragmentary and incomplete nature of most existing chains of deduction this discovery comes with all the overwhelming force of a revelation; like a palace emerging from the autumn mist as the traveller ascends an Italian hill-side, the stately storeys of the mathematical edifice appear in their