and Geometry—is built up by combinations of the primitive ideas of logic, and its propositions are deduced from the general axioms of logic, such as the syllogism and the other rules of inference. And this is no longer a dream or an aspiration. On the contrary, over the greater and more difficult part of the domain of mathematics, it has been already accomplished; in the few remaining cases, there is no special difficulty, and it is now being rapidly achieved. Philosophers have disputed for ages whether such deduction was possible; mathematicians have sat down and made the deduction. For the philosophers there is now nothing left but graceful acknowledgments.
The subject of formal logic, which has thus at last shown itself to be identical with mathematics, was, as every one knows, invented by Aristotle, and formed the chief study (other than theology) of the Middle Ages. But Aristotle never got beyond the syllogism, which is a very small part of the subject, and the schoolmen never got beyond Aristotle. If any proof were required of our superiority to the mediæval doctors, it might be found in this. Throughout the Middle Ages, almost all the best intellects devoted themselves to formal logic, whereas in the nineteenth century only an infinitesimal proportion of the world's thought went into this subject. Nevertheless, in each decade since 1850 more has been done to advance the subject than in the whole period from Aristotle to Leibniz. People have discovered how to make reasoning symbolic, as it is in Algebra, so that deductions are effected by mathematical rules. They have discovered many rules besides the syllogism, and a new branch of logic, called the Logic of Relatives,[1] has been invented to deal with topics that wholly surpassed the powers of
- ↑ This subject is due in the main to Mr. C. S. Peirce.