papers and blind interviews of the exposed persons. The samples were extracted with carbon disulfide, and the extracts were analyzed by GC or TLC. Most correlations of CCP with discomfort were not statistically significant but were found in one brand of paper that used MIPB as the solvent for the color formers. However, the authors concluded that the discomfort-inducing factor was unlikely to be MIPB because two types of MIPB paper were on the market at the time of this study, but patient complaints identified only one of them. CCPs treated with D-ink were more frequently linked to work-related skin symptoms than those not treated with the ink. This correlation was statistically significant (P<0.05). No such correlation was seen for mucous membrane irritation symptoms. The authors concluded that the causal factor was probably two desensitizing inks available on the Swedish market during the investigation period (from January 1 to October 27, 1980)—but not necessarily to D-inks in general. The suspected ingredient in one of the D-inks was 1-hydroxyethyl-2-oleylimidoazoline—the same ink that had previously been associated with skin and eye irritation among office staff in Belgium [Dodds and Butler 1981].
Jeansson et al. 1983, 1984. See Section 4.2.3.1 for a discussion of this study.
Marks et al. 1984; Trautlein et al. 1984. A 27-year-old woman in the United States had an 8-year history of pruritus, eye and throat irritation, hoarseness, irregular heartbeat, headache, nausea, tightness of the chest, shortness of breath, and fatigue within 30 min of exposure to CCP [Marks et al. 1984; Trautlein et al. 1984]. For 10 years, she had worked in the same factory, which printed, cut, collated, and packaged CCP. She reported that her symptoms became progressively worse as she processed greater amounts of CCP in her job of removing and stacking forms from a collating machine. When working with regular paper, she was asymptomatic. Her symptoms disappeared on weekends, nights, and after 1 hr of exposure to fresh air. On two occasions, she was challenged in a controlled-blinded fashion with portions of complete forms of the CCP. Both challenges resulted in contact urticaria of the hand that held the paper and changes in pulmonary function characteristic of upper airway obstruction. To determine whether alterations in prostaglandin (PG) metabolism might explain these findings, plasma PGF2 alpha and thromboxane B2 (both capable of causing these symptoms) were measured before and during the second exposure period. Both PGF2 alpha and thromboxane B2 increased substantially. The authors concluded that the cutaneous and respiratory symptoms induced by CCP were probably related to PG release and caused by a chemical formed from the reaction of the color former with the color developer, since the patient reacted only to the complete forms and not to the single sheets. When the patient was relocated within the factory with no exposure to CCP, she was asymptomatic.
Similar symptoms were found in 9 of 59 workers in a subsequent plant survey. The symptoms reported by the 9 workers included throat irritation (8), skin itching (5), headache (4), hoarseness (3), difficulty breathing (3), chest tightness (3), rash (2), burning eyes (2), chest pain (2), nausea (1), weakness (1), and rapid heartbeat (1). A statistically significant (P<0.01) relationship existed between symptoms and high exposure to CCP (compared with low exposure to CCP).
Messite and Baker 1984; Messite and Fannick 1980. Messite and Baker [1984] summarized a number of NIOSH Health Hazard Evaluations dealing with indoor environmental quality and specifically reported on a previous study involving CCP [Messite and Fannick 1980]. Six complaints of skin and eye irritation among 100 office staff members and faculty at a school were related to heavy CCP