isting, B also exists, when A is possible, B will be also possible, but A is supposed to be possible, wherefore B will be also possible, for if it were impossible the same thing would be possible and impossible at the same time. These things then being established, let A be present with every B, and B contingent to every C, therefore A must necessarily happen to be present with every C; for let it not happen, but let B be supposed to be present with every C, this is indeed false yet not impossible; if then A is not contingent to C, but B is present with every C, A is not contingent to every B, for a syllogism arises in the third figure. But it was supposed (that A was) contingently present with every (B), therefore A must necessarily be contingent to every C, for the false being assumed, and not the impossible, the consequence is impossible. We may also make a deduction to the impossible in the first figure by assuming B to be present with every C, for if B is with every C, but A contingent to every B, A will also be contingent to every C, but it was supposed not to be present with every C. Still we must assume the being present with every, not distinguishing it by time, as "now" or "at this time," but simply; for by propositions of this kind, we also produce syllogisms,