tain B, and with a certain C, but B with no C, as animal may be with something white, and with something black, but whiteness with nothing black. If then A is assumed present with every B, but with no C, both premises are partly false, but the conclusion will be true. Likewise when the negative is transposed by the same terms.
This is evident also as to particular syllogisms, since nothing hinders A from being with every B, but with a certain C, and B from not being with a certain C, as animal is with every man, and with something white, yet man may not concur with something white. If then A is assumed present with no B, but with a certain C, the universal premise will be wholly false, but the particular true, and the conclusion true. Likewise if the proposition A B is taken affirmative, for A may be with no B, and may not be with a certain C, and B not present with a certain C; thus animal is with nothing inanimate, but with something white, and the inanimate will not be present with something white. If then A is assumed present with every B, but not present with a certain C, the universal premise A B will be wholly false, but A C true, and the conclusion true. Also if the universal be taken true, but the particular false, since nothing prevents A from being neither consequent to any B nor to any C, and B from not being with a certain C, as animal is consequent to no number, and to nothing inanimate, and number is not consequent to a certain inanimate thing. If then A is assumed present with no B, but with a certain C, the con clusion will be true, also the universal proposition, but the particular will be false. Likewise if the universal proposition be taken affirmatively, since A may be with the whole of B and with the whole of C, yet B not be consequent to a certain C, as genus to species and difference, for animal is consequent to every man, and to the whole of what is pedestrian, but man is not (consequent) to every pedestrian. Hence if A is assumed present with the whole of B, but not with a certain C, the universal proposition will be true, but the particular false, and the conclusion true.