a certain C, and A not consisting with every B as whiteness is not present with a certain animal, but beauty is with some one, and whiteness is not with every thing beautiful, so that if A is assumed present with no C, but B with every C, both premises will be partly false, but the conclusion will be true. Likewise, if one premise be assumed wholly false, but the other wholly true, for both A and B may follow every C, but A not be with a certain B, as animal and whiteness follow every swan, yet animal is not with every thing white. These terms therefore being laid down, if B be assumed present with the whole of C, but A not with the whole of it, B C will be wholly true, and A C wholly false, and the conclusion will be true. So also if B C is false, but A C true, for there are the same terms for demonstration, black, swan, inanimate. Also even if both premises are assumed affirmative, since nothing prevents B following every C, but A not wholly being present with it, also A may be with a certain B, as animal is