stration must consist of things prior and more known, as it is impossible that the same should be prior and posterior to the same, unless in a different way, as for instance, some things with reference to us, but others simply in the manner in which induction makes known. If however this be so, to know simply will not be well defined, but it is two-fold, or the other demonstration is not simply so which is produced from things more known to us. Still there happens to those who assert there is demonstration in a circle, not only what has now been declared, but that they say nothing else than this is if it is, and in this manner we may easily demonstrate all things. Nevertheless it is evident that this occurs, when three terms are laid down, for to assert that demonstration recurs through many or through few terms, or whether through few or through two, makes no difference. For when A existing, B necessarily is, and from this last C, if A exists C will exist, if then, when A is, it is necessary that B should be, but this existing, A exists, (for this were to demonstrate in a circle,) let A be laid down in the place of C. To say therefore that because B is A is, is equivalent to saying that C is, and this is to say that A existing C is, but C is the same as A, so that it happens that they who assert there is demonstration in a circle, say nothing else than that A is because A is, and thus we may easily demonstrate all things. Neither however is this possible, except in those things which follow each other as properties: from one thing however being laid down, it has been proved that there will never necessarily result something else, (I mean by one thing, neither one term, nor one thesis being laid down,) but from two first and least theses, it is possible (to infer necessarily something else), since we may syllogize. If then A is consequent to B and to C, and these to each