(33) Suppose that in a uniform medium the motion of the fluid is everywhere parallel to one plane, then the surfaces of equal pressure will be perpendicular to this plane. If we take two parallel planes at a distance equal to k from each other, we can divide the space between these planes into unit tubes by means of cylindric surfaces perpendicular to the planes, and these together with the surfaces of equal pressure will divide the space into cells of which the length is equal to the breadth. For if h be the distance between consecutive surfaces of equal pressure and the section of the unit tube, we have by (13) .
But s is the product of the breadth and depth; but the depth is k, therefore the breadth is h and equal to the length.
If two systems of plane curves cut each other at right angles so as to divide the plane into little areas of which the length and breadth are equal, then by taking another plane at distance k from the first and erecting cylindric surfaces on the plane curves as bases, a system of cells will be formed which will satisfy the conditions whether we suppose the fluid to run along the first set of cutting lines or the second[1].
Application of the Idea of Lines of Force.
I have now to shew how the idea of lines of fluid motion as described above may be modified so as to be applicable to the sciences of statical electricity, permanent magnetism, magnetism of induction, and uniform galvanic currents, reserving the laws of electro-magnetism for special consideration.
I shall assume that the phenomena of statical electricity have been already explained by the mutual action of two opposite kinds of matter. If we consider one of these as positive electricity and the other as negative, then any two particles of electricity repel one another with a force which is measured by the product of the masses of the particles divided by the square of their distance.
Now we found in (18) that the velocity of our imaginary fluid due to a source at a distance varies inversely as . Let us see what will be the effect of substituting such a source for every particle of positive electricity. The velocity due to each source would be proportional to the attraction due to the corresponding particle, and the resultant velocity due to all the sources would
- ↑ See Cambridge and Dublin Mathematical Journal, Vol. III p.286.