Page:On the Similarities between Radiation and Mechanical Strains.djvu/4

From Wikisource
Jump to navigation Jump to search
This page has been validated.
1901.]
between Radiation and Mechanical Strains.
177

If the conductivity variation under the stimulus of electric radiation and the electromotive variation under mechanical stimulus are but expressions of some molecular effect, we may expect the peculiarity of one kind of response reflected in the other. We shall presently see how closely the normal effects in the two classes resemble each other. Still more extraordinary are the similarities that exist even in abnormalities, several instances of which will be given later. I shall mention


Fig. 12.—E.M. variation due to torsion of zinc wire. Successive dots in the ascending portion of the curve represent effect of rotation through 360°. The descending curve represents recovery.

here only one case. We have seen in experiments with electric radiation that substances sometimes fall into a sluggish molecular condition, when the responses almost disappear. Strong stimulation (induction shocks, &c.) or annealing is found to restore the sensitiveness. The same peculiarity is observed in the strain-cell. Lead, for example, specially on cold days, is apt to fall into a sluggish condition, when it becomes almost irresponsive. But it regains its sensitiveness after intense vibration or annealing.

All metals (including the noble metal Pt) when molecularly disturbed exhibit electromotive effect. The intensity of electromotive variation depends on the nature and physical condition of the substance. The intensity of effect does not, however, depend on the chemical activity of the substance, for the electromotive variation in the relatively inactive tin is greater than that of zinc. The electrolyte used in the following experiments is common tap-water, but similar effects are also obtained with distilled water.