L
e
t
q
r
e
p
r
e
s
e
n
t
E
Q
q
′
…
…
…
…
…
E
q
f
…
…
…
…
…
E
F
}
a
s
b
e
f
o
r
e
,
{\displaystyle \left.{\begin{aligned}\mathrm {Let} ~&q&~\mathrm {represent} ~&EQ\\&q'&~\ldots \ldots \ldots \ldots \ldots ~&Eq\\&f&~\ldots \ldots \ldots \ldots \ldots ~&EF\end{aligned}}\right\}~\mathrm {as~before,} }
and
v
{\displaystyle v}
being the actual intersection of the reflected ray and axis,
let
q
‵
=
E
v
{\displaystyle q\backprime =Ev}
.
Then since
q
′
{\displaystyle q'}
is the limiting value of
q
‵
{\displaystyle q\backprime }
when
θ
=
0
{\displaystyle \theta =0}
, we must have
q
‵
=
q
′
+
d
q
‵
d
θ
2
.
θ
+
1
1.2
d
2
q
‵
d
θ
2
.
θ
2
+
.
.
.
.
{\displaystyle q\backprime =q'+{\frac {dq\backprime }{d\theta ^{2}}}.\theta +{\frac {1}{1.2}}{\frac {d^{2}q\backprime }{d\theta ^{2}}}.\theta ^{2}+....}
θ
{\displaystyle \theta }
being made equal to
0
{\displaystyle 0}
in every differential coefficient, or if we consider
q
‵
{\displaystyle q\backprime }
as a function of the versed sine of
θ
{\displaystyle \theta }
, which we will call
v
,
{\displaystyle v,}
q
‵
=
q
′
+
(
d
q
‵
d
v
)
v
+
1
1.2
(
d
2
q
‵
d
v
2
)
v
2
+
.
.
.
.
{\displaystyle q\backprime =q'+\left({\frac {dq\backprime }{dv}}\right)v+{\frac {1}{1.2}}\left({\frac {d^{2}q\backprime }{dv^{2}}}\right)v^{2}+....}
The brackets indicating that
v
{\displaystyle v}
is made
=
0
{\displaystyle =0}
in each coefficient.
N
o
w
q
‵
=
q
f
f
+
q
cos
θ
=
q
f
f
+
q
(
1
−
v
e
r
s
i
n
θ
)
=
q
f
q
+
f
−
q
v
d
q
‵
d
v
=
q
2
f
(
q
+
f
−
q
v
)
2
w
h
i
c
h
w
h
e
n
v
=
0
,
b
e
c
o
m
e
s
q
2
f
(
q
+
f
)
2
1
1.2
d
2
q
‵
d
v
2
=
1
1.2
2
q
3
f
(
q
+
f
−
q
v
)
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
q
3
f
(
q
+
f
)
3
,
{\displaystyle {\begin{aligned}\mathrm {Now} ~q\backprime &={\frac {qf}{f+q\cos \theta }}={\frac {qf}{f+q(1-\operatorname {ver~sin} \theta )}}={\frac {qf}{q+f-qv}}\\{\frac {dq\backprime }{dv}}&={\frac {q^{2}f}{(q+f-qv)^{2}}}~\mathrm {which~when} ~v=0,~\mathrm {becomes} ~{\frac {q^{2}f}{(q+f)^{2}}}\\{\frac {1}{1.2}}{\frac {d^{2}q\backprime }{dv^{2}}}&={\frac {1}{1.2}}{\frac {2q^{3}f}{(q+f-qv)^{3}}}..................{\frac {q^{3}f}{(q+f)^{3}}},\end{aligned}}}
and so on, whence
q
‵
=
q
f
q
+
f
+
q
2
f
.
v
(
q
+
f
)
2
+
q
3
f
.
v
2
(
q
+
f
)
3
+
q
4
.
f
v
3
(
q
+
f
)
4
+
.
.
.
.
{\displaystyle q\backprime ={\frac {qf}{q+f}}+{\frac {q^{2}f.v}{(q+f)^{2}}}+{\frac {q^{3}f.v^{2}}{(q+f)^{3}}}+{\frac {q^{4}.fv^{3}}{(q+f)^{4}}}+....}
This in geometrical terms amounts to
E
q
+
Q
E
2
Q
F
2
.
A
N
2
+
Q
E
3
Q
F
3
.
A
N
2
4
E
F
+
.
.
.
.
{\displaystyle Eq+{\frac {QE^{2}}{QF^{2}}}.{\frac {AN}{2}}+{\frac {QE^{3}}{QF^{3}}}.{\frac {AN^{2}}{4EF}}+....}
The Aberration is represented by this series without its first term; and when the angle
θ
{\displaystyle \theta }
, and a fortiori its versed sine, are but small, the second term of the series will give a near approximate value.
Note . The above is perhaps the neatest way of obtaining the series for the aberration: it is sometimes done by a method simpler in its principle