OO ′=2OA =2a ,
OO ″=2O′B −O′A =O′B +OB =2AB =2c ,
OO ‴=2A′O″ −OO″ =AO″ +AO =2OO ″+2AO =2c +2a ,
⋮ :
OO ′ =2OB =b ,
OO ″ =2AO ′ −OO ′ =AO ′ +AO =2AB =2c ,
OO ‴ =2BO ″ −OO ″ =BO ″ +BO =OO ″ +2BO =2c +2b .
⋮ :
The angular distances between the object and the images, that is, the angles OEO ′ , OEO ″ , &c. may be calculated by means of their tangents; thus, if EN be perpendicular to AB ,
OEO ′
=
NEO ′−NEO =tan−1 NO ′/ EN −tan−1 NO / EN ,
OEO ″
=
NEO ″+NEO =tan−1 NO ″/ EN +tan−1 NO / EN ,
OEO ‴
=
NEO ‴−NEO =tan−1 NO ‴/ EN −tan−1 NO / EN , &c.
Thus supposing the distance AB is 5 inches,
that AO
=
2 ,
BO
=
3 ,
EN
=
6 ,
NO
=
1 .
Then OO ′=4 ;
OO ″=10 ;
OO ‴=14 , &c.
OO ′ =b ;
OO ″ =10 ;
OO ‴ =16 , &c.
NO / EN =1 / 6 =.1666…
NEO =tan−1 .1666…=9°27′1 / 2 nearly,
NO ′/ EN =5 / 6 =.8333…
NEO ′=tan−1 .8333…=39°48′1 / 2 ;
∴ OEO ′=30°21′ ,