Jump to content

Page:Optics.djvu/55

From Wikisource
This page has been validated.

31

OO′=2OA=2a,
OO″=2O′BO′A=O′B+OB=2AB=2c,
OO‴=2A′O″OO″=AO″+AO=2OO″+2AO=2c+2a,
:
OO=2OB=b,
OO=2AOOO=AO+AO=2AB=2c,
OO=2BOOO=BO+BO=OO+2BO=2c+2b.
:

The angular distances between the object and the images, that is, the angles OEO, OEO, &c. may be calculated by means of their tangents; thus, if EN be perpendicular to AB,

OEO = NEO′−NEO=tan−1NO/EN−tan−1NO/EN,
OEO = NEO″+NEO=tan−1NO/EN+tan−1NO/EN,
OEO = NEO‴−NEO=tan−1NO/EN−tan−1NO/EN, &c.

Thus supposing the distance AB is 5 inches,

that AO = 2,
BO = 3,
EN = 6,
NO = 1.
Then OO′=4; OO″=10; OO‴=14, &c.
OO=b; OO=10; OO=16, &c.
NO/EN=1/6=.1666… NEO=tan−1.1666…=9°27′1/2 nearly,
NO/EN=5/6=.8333… NEO′=tan−1.8333…=39°48′1/2;
OEO′=30°21′,