sensible space, they must be an inference. It is not easy to see any way in which, as independent entities, they could be validly inferred from the data; thus here again, we shall have, if possible, to find some logical construction, some complex assemblage of immediately given objects, which will have the geometrical properties required of points. It is customary to think of points as simple and infinitely small, but geometry in no way demands that we should think of them in this way. All that is necessary for geometry is that they should have mutual relations possessing certain enumerated abstract properties, and it may be that an assemblage of data of sensation will serve this purpose. Exactly how this is to be done, I do not yet know, but it seems fairly certain that it can be done.
The following illustrative method, simplified so as to be easily manipulated, has been invented by Dr Whitehead for the purpose of showing how points might be manufactured from sense-data. We have first of all to observe that there are no infinitesimal sense-data: any surface we can see, for example, must be of some finite extent. But what at first appears as one undivided whole is often found, under the influence of attention, to split up into parts contained within the whole. Thus one spatial object may be contained within another, and entirely enclosed by the other. This relation of enclosure, by the help of some very natural hypotheses, will enable us to define a “point” as a certain class of spatial objects, namely all those (as it will turn out in the end) which would naturally be said to contain the point. In order to obtain a definition of a “point” in this way, we proceed as follows:
Given any set of volumes or surfaces, they will not in general converge into one point. But if they get smaller