given instant the moving body occupies a certain position, and at other instants it occupies other positions; the interval between any two instants and between any two positions is always finite, but the continuity of the motion is shown in the fact that, however near together we take the two positions and the two instants, there are an infinite number of positions still nearer together, which are occupied at instants that are also still nearer together. The moving body never jumps from one position to another, but always passes by a gradual transition through an infinite number of intermediaries. At a given instant, it is where it is, like Zeno’s arrow;[1] but we cannot say that it is at rest at the instant, since the instant does not last for a finite time, and there is not a beginning and end of the instant with an interval between them. Rest consists in being in the same position at all the instants throughout a certain finite period, however short; it does not consist simply in a body’s being where it is at a given instant. This whole theory, as is obvious, depends upon the nature of compact series, and demands, for its full comprehension, that compact series should have become familiar and easy to the imagination as well as to deliberate thought.
What is required may be expressed in mathematical language by saying that the position of a moving body must be a continuous function of the time. To define accurately what this means, we proceed as follows. Consider a particle which, at the moment t, is at the point P. Choose now any small portion P1 P2 of the path of the particle, this portion being one which contains P. We say then that, if the motion of the particle is continuous at the
- ↑ See next lecture.