which so delighted the sophists or unsound reasoners of ancient Greece,” and this no doubt represents the judgment of common sense upon such arguments. Yet if collections of things were things, his contention would be irrefragable. It is only because the bay horse and the dun cow taken together are not a new thing that we can escape the conclusion that there are three things wherever there are two.
When it is admitted that classes are not things, the question arises: What do we mean by statements which are nominally about classes? Take such a statement as, “The class of people interested in mathematical logic is not very numerous.” Obviously this reduces itself to, “Not very many people are interested in mathematical logic.” For the sake of definiteness, let us substitute some particular number, say 3, for “very many.” Then our statement is, “Not three people are interested in mathematical logic.” This may be expressed in the form: “If x is interested in mathematical logic, and also y is interested, and also z is interested, then x is identical with y, or x is identical with z, or y is identical with z.” Here there is no longer any reference at all to a “class.” In some such way, all statements nominally about a class can be reduced to statements about what follows from the hypothesis of anything’s having the defining property of the class. All that is wanted, therefore, in order to render the verbal use of classes legitimate, is a uniform method of interpreting propositions in which such a use occurs, so as to obtain propositions in which there is no longer any such use. The definition of such a method is a technical matter, which Dr Whitehead and I have dealt with elsewhere, and which we need not enter into on this occasion.[1]
- ↑ Cf. Principia Mathematica, § 20, and Introduction, chapter iii.