Jan. 1910.
Aberration and the Principle of Relativity.
263
to V1 are
V
0
cos
α
,
−
V
0
sin
α
{\displaystyle V_{0}\cos \alpha ,\ -V_{0}\sin \alpha }
. Hence for E the components of the apparent velocity of S are (by § 6)
V
0
cos
α
−
U
sin
β
1
1
−
V
0
cos
α
sin
β
1
/
U
,
−
V
0
sin
α
cos
β
1
1
−
V
0
cos
α
sin
β
1
/
U
{\displaystyle {\frac {V_{0}\cos \alpha -U\ \sin \beta _{1}}{1-V_{0}\cos \alpha \sin \beta _{1}/U}},\ {\frac {-V_{0}\sin \alpha \ \cos \beta _{1}}{1-V_{0}\cos \alpha \sin \beta _{1}/U}}}
or
U
(
cos
α
sin
β
0
−
sin
β
1
)
1
−
cos
α
sin
β
0
sin
β
1
,
−
U
sin
α
sin
β
0
sin
β
1
1
−
cos
α
sin
β
0
sin
β
1
.
{\displaystyle {\frac {U\left(\cos \alpha \ \sin \beta _{0}-\sin \beta _{1}\right)}{1-\cos \alpha \sin \beta _{0}\sin \beta _{1}}},\ {\frac {-U\ \sin \alpha \ \sin \beta _{0}\sin \beta _{1}}{1-\cos \alpha \sin \beta _{0}\sin \beta _{1}}}.}
Now E must infer that his own velocity relative to S,
V
10
=
U
sin
β
10
{\displaystyle V_{10}=U\ \sin \beta _{10}}
, has these components reversed in sign; and if θ be the angle between V1 and the resultant we have
sin
β
10
cos
θ
=
(
sin
β
1
−
cos
α
sin
β
0
)
/
(
1
−
cos
α
sin
β
0
sin
β
1
)
{\displaystyle \sin \beta _{10}\cos \theta =\left(\sin \beta _{1}-\cos \alpha \ \sin \beta _{0}\right)/\left(1-\cos \alpha \sin \beta _{0}\sin \beta _{1}\right)}
sin
β
10
cos
θ
=
sin
α
−
sin
β
0
cos
β
1
/
(
1
−
cos
α
sin
β
0
sin
β
1
)
{\displaystyle \sin \beta _{10}\cos \theta =\sin \alpha -\sin \beta _{0}\ \cos \beta _{1}/\left(1-\cos \alpha \sin \beta _{0}\sin \beta _{1}\right)}
and we deduce
cos
β
10
=
cos
β
0
cos
β
1
/
(
1
−
cos
α
sin
β
0
sin
β
1
)
.
{\displaystyle \cos \beta _{10}=\cos \beta _{0}\ \cos \beta _{1}/\left(1-\cos \alpha \sin \beta _{0}\sin \beta _{1}\right).}
We take the z -axis perpendicular to V0 and V1 throughout, and
(i) The x -axis parallel to V0 . If (λ, μ, ν) are the direction cosines of a star in its true position, S observes this star in the direction (by § 7)
λ
0
=
λ
+
sin
β
0
1
+
λ
sin
β
0
,
μ
0
=
μ
cos
β
0
1
+
λ
sin
β
0
,
ν
0
=
ν
cos
β
0
1
+
λ
sin
β
0
.
{\displaystyle \lambda _{0}={\frac {\lambda +\sin \beta _{0}}{1+\lambda \sin \beta _{0}}},\ \mu _{0}={\frac {\mu \ \cos \beta _{0}}{1+\lambda \sin \beta _{0}}},\ \nu _{0}={\frac {\nu \ \cos \beta _{0}}{1+\lambda \sin \beta _{0}}}.}
(ii) We turn the x -axis through the angle a to bring it into the direction of V1 . The direction cosines of the star in its true position become
λ
cos
α
+
μ
sin
α
,
μ
cos
α
−
λ
sin
α
,
ν
,
{\displaystyle \lambda \ \cos \alpha +\mu \ \sin \alpha ,\ \mu \ \cos \alpha -\lambda \ \sin \alpha ,\ \nu ,}
and E will observe it in the direction
λ
1
=
(
λ
cos
α
+
μ
sin
α
+
sin
β
1
)
/
{
1
+
(
λ
cos
α
+
μ
sin
α
)
sin
β
1
}
μ
1
=
(
μ
cos
α
−
λ
sin
α
)
cos
β
1
/
{
1
+
(
λ
cos
α
+
μ
sin
α
)
sin
β
1
}
ν
1
=
ν
cos
β
1
/
{
1
+
(
λ
cos
α
+
μ
sin
α
)
sin
β
1
}
{\displaystyle {\begin{array}{lr}\lambda _{1}=&\left(\lambda \ \cos \alpha +\mu \ \sin \alpha +\sin \beta _{1}\right)/\left\{1+\left(\lambda \ \cos \alpha +\mu \ \sin \alpha \right)\sin \beta _{1}\right\}\\\\\mu _{1}=&(\mu \ \cos \alpha -\lambda \ \sin \alpha )\cos \beta _{1}/\left\{1+\left(\lambda \ \cos \alpha +\mu \ \sin \alpha \right)\sin \beta _{1}\right\}\\\\\nu _{1}=&\nu \ \cos \beta _{1}/\left\{1+\left(\lambda \ \cos \alpha +\mu \ \sin \alpha \right)\sin \beta _{1}\right\}\end{array}}}
(iii) We turn the x -axis through the further angle θ to bring it into the direction of V10 . The direction cosines of the star in its apparent position become
λ
1
cos
θ
+
μ
1
sin
θ
,
μ
1
cos
θ
−
λ
1
sin
θ
,
ν
1
,
{\displaystyle \lambda _{1}\cos \theta +\mu _{1}\sin \theta ,\ \mu _{1}\cos \theta -\lambda _{1}\sin \theta ,\ \nu _{1},}
and when E has corrected this position for his observed relative velocity V10 he will infer that the star lies in the direction
λ
10
=
(
λ
1
cos
θ
+
μ
1
sin
θ
−
sin
β
10
)
/
{
1
−
(
λ
1
cos
θ
+
μ
1
sin
θ
)
sin
β
10
}
μ
10
=
(
μ
1
cos
θ
−
λ
1
sin
θ
)
cos
β
10
/
{
1
−
(
λ
1
cos
θ
+
μ
1
sin
θ
)
sin
β
10
}
ν
10
=
ν
1
cos
β
10
/
{
1
−
(
λ
1
cos
θ
+
μ
1
sin
θ
)
sin
β
10
}
.
{\displaystyle {\begin{array}{lr}\lambda _{10}=&\left(\lambda _{1}\ \cos \theta +\mu _{1}\ \sin \theta -\sin \beta _{10}\right)/\left\{1-\left(\lambda _{1}\ \cos \theta +\mu _{1}\ \sin \theta \right)\sin \beta _{10}\right\}\\\\\mu _{10}=&(\mu _{1}\ \cos \theta -\lambda _{1}\ \sin \theta )\cos \beta _{10}/\left\{1-\left(\lambda _{1}\ \cos \theta +\mu _{1}\ \sin \theta \right)\sin \beta _{10}\right\}\\\\\nu _{10}=&\nu _{1}\ \cos \beta _{10}/\left\{1-\left(\lambda _{1}\ \cos \theta +\mu _{1}\ \sin \theta \right)\sin \beta _{10}\right\}.\end{array}}}
These have to be compared with
λ
0
,
μ
0
,
ν
0
{\displaystyle \lambda _{0},\ \mu _{0},\ \nu _{0}}
, remembering that the axes have been turned through an angle α + θ .