regarded as producing the same effect as the single force acting alone. In like manner a single motion of rotation about a given axis may be resolved into two motions of rotation about two given axes: and if these two motions take place simultaneously, they may be regarded as together producing the same effect as the single motion. Thus, if a body (which for the sake of simplicity we may suppose to be
Fig. 67.
spherical) be made to rotate about the line OA, Figure 67, any point in it will describe a circle in a plane perpendicular to OA, with its centre on that line. Suppose that in a given time the point P is thus brought from one position P to another R; then it is possible to produce the same change in position by giving the body two successive rotations about two lines, OB, OC. For by virtue of a rotation about the line OB, P may be made to describe the