observes the Polar Star when it passes the transit instrument at its upper passage, as at K, and also when it passes its lower passage, as at F. If these are twelve hours apart, we know that the transit instrument is in its proper position. For as the star describes the whole circle, in twenty-four hours, if the times of passing at F and K are twelve hours apart, there must be exactly half the circle between them, and therefore the line FK must pass through the centre of the circle, or through the Pole of the heavens. But supposing the transit instrument were a little out of position, so that the line described by CDE prolonged would be GI, then the star would require more than twelve hours to pass from its visible upper passage at I, through KLF, to its visible lower passage at G, and fewer than twelve hours to pass from its visible lower passage at G, through H, to its visible upper passage at I. In this manner we are enabled to adjust this transit instrument to its position with the utmost accuracy.
Having explained the manner in which the transit instrument is placed accurately in its proper position, I will now explain its use, I will assume you are looking to the south. The observer stations himself at his transit instrument, not looking at all parts of the sky, but waiting to observe the stars as they pass the meridian. The clock is going all the time. A star is seen to be approaching the meridian: the observer directs the telescope so as to observe the star when it actually crosses the meridian, and then looks into the telescope. In the telescope he sees the wires, and sees the image of the star travelling along, and he observes the passage of the star over every wire. Just before the star begins to pass, he looks to the clock face for the hours and minutes,