Page:Popular Astronomy - Airy - 1881.djvu/50

From Wikisource
Jump to navigation Jump to search
This page has been validated.
36
POPULAR ASTRONOMY

distance on the north side of the Zenith. Thus we find that between the Zenith and the Pole there are so many degrees, and minutes, and seconds, of angular distance. That is obtained from the observations with the Mural Circle, directed to the Polar Star. By using the same instrument in the same manner, but directed to a planet or other object, we find the angular distance from the Zenith to the planet on the south side of the Zenith. We have then, got these two things: we have got the angular distance of the Polar Star from the Zenith on one side, and the angular distance of the planet from the Zenith on the other side. By adding these together, we have the angular distance of the planet from the North Pole. This is the other co-ordinate necessary to define the planet's place.

As I said before, by the transit instrument we have found what is the proportion of a revolution through which the celestial globe must be turned in respect to a certain fixed star, in order that we may fix the position of the globe when the body passes the meridian; and by the observations with the Mural Circle, we have fixed the distance of the object from the Pole, when that object passes the meridian. These are the two co-ordinates which completely define the planet's place. If we had a globe we could mark down the place of the object at once. Or, instead of this, the result of the two kinds of observation may be registered in figures.

I have referred the times of transit of planets and small stars to one principal star, supposing it taken as a point of departure. This method was adopted by my predecessor, Dr. Maskelyne, and by several of the best astronomers. Dr. Maskelyne adopted the bright star of Aquila, as his fundamental star; others,