Jump to content

Page:Popular Science Monthly Volume 1.djvu/603

From Wikisource
This page has been validated.
MEASUREMENT OF EARTHQUAKE-WAVES.
587

close to the well-known "Hermitage," or half-way house, in the ascent of the mountain. Being raised on this ridge above the surrounding country, it is comparatively safe from the molten lava that flows at times on either side of it.

The building itself is handsome; in fact, it is to be regretted that so much money should have been devoted to the masonry instead of to additional instruments. On the ground-floor are the inhabited rooms, all scantily furnished; but the pursuers of science cannot always expect bodily comfort. On the first floor we find the Museum, with a fine collection of minerals found on the mountain. Perhaps it may be as well here to correct the common mistake as to the nature of the yellow substance found about the craters, whose brilliant colors remind one so much of the Solfatara. This substance is not sulphur, but copper. The most interesting objects in the Museum are the "fumerolles," or smoke-holes. Occasionally at the end of an eruption you may see at the bottom of the crater a small cone of lava, with a hole in its top, through which the steam pours with a hissing noise like a wave breaking on a pebbly beach, or like a blast-furnace, or, as Pliny has it, like the grinding of a saw; the intensity of the sound varying with your position. These small cones are the fumerolles; they are a foot or two high; and Palmieri has actually had several of these natural chimneys cut off and transported to the Museum.

We now pass on to the Observing-Room. There are solid piers carried up from the ground to support the instruments. First comes the elegant seismograph, an instrument for the automatic registration of earthquake-shocks. The object of the instrument is twofold: first, to measure the direction and intensity of a shock; and, second, to write down a history of the earthquake. The shock may be either vertical or horizontal, or partly vertical and partly horizontal. For the vertical shocks a fine metallic point is suspended by a coil of wire over a cup of mercury. The coil of wire acts as a spring, and the slightest upward motion of the earth is sufficient to cause the point to dip into the cup of mercury. This completes a galvanic circuit, which stops a clock at the exact half-second at which the shock occurred, and rings a bell to call the observer, and also does other work which we shall speak of again. There are three or four helices of wire of different strengths, which support small magnets above a cup of iron filings. When a vertical shock occurs, some of these magnets dip into the iron filings. To one of these a light index is attached, for measuring the intensity of the shock.

For horizontal shocks there are four glass tubes. Each of them is bent twice at right angles, so as to form a U-tube. One arm of this tube has more than double the diameter of the other, and is shorter. The four tubes point in the directions of the four cardinal points. Each tube has a certain quantity of mercury poured into it, and on the surface of the mercury, within the narrow arm of the tube, there rests