In no other way can the yeast-plant obtain the gas necessary for its respiration than by wrenching it from surrounding substances in which the oxygen exists, not free, but in a state of combination. It decomposes the sugar of the solution in which it grows, produces heat, breathes forth carbonic-acid gas, and one of the liquid products of the decomposition is our familiar alcohol. The act of fermentation, then, is a result of the effort of the little plant to maintain its respiration by means of combined oxygen, when its supply of free oxygen is cut off. As defined by Pasteur, fermentation is life without air.
But here the knowledge of that thorough investigator comes to our aid to warn us against errors which have been committed over and over again. It is not all yeast-cells that can thus live without air and provoke fermentation. They must be young cells which have caught their vegetative vigor from contact with free oxygen. But, once possessed of this vigor, the yeast may be transplanted into a saccharine infusion absolutely purged of air, where it will continue to live at the expense of the oxygen, carbon, and other constituents of the infusion. Under these new conditions its life, as a plant, will be by no means so vigorous as when it had a supply of free oxygen, but its action as a ferment will be indefinitely greater.
Does the yeast-plant stand alone in its power of provoking alcoholic fermentation? It would be singular if amid the multitude of low vegetable forms no other could be found capable of acting in a similar way. And here, again, we have occasion to marvel at that sagacity of observation among the ancients to which we owe so vast a debt. Not only did they discover the alcoholic ferment of yeast, but they had to exercise a wise selection in picking it out from others, and giving it special prominence. Place an old boot in a moist place, or expose common paste or a pot of jam to the air: it soon becomes coated with a blue-green mould, which is nothing else than the fructification of a little plant called Penicillium glaucum. Do not imagine that the mould has sprung spontaneously from boot, or paste, or jam; its germs, which are abundant in the air, have been sown, and have, germinated, in as legal and legitimate a way as thistle-seeds wafted by the wind to a proper soil. Let the minute spores of Penicillium be sown in a fermentable liquid, which has been previously boiled in order to kill all other spores or seeds which it may contain; let pure air have free access to the mixture: the Penicillium will grow rapidly, striking long filaments into the liquid, and fructifying at its surface. Test the infusion at various stages of the plant's growth: you will never find in it a trace of alcohol. But forcibly submerge the little plant, push it down deep into the liquid, where the quantity of free oxygen that can reach it is insufficient for its needs: it immediately begins to act as a ferment, supplying itself with oxygen by the decomposition of the sugar, and producing alcohol as one of the results of the decomposition. Many other low microscopic plants act in a similar