discovered the moth which fertilizes the flower, but finds an anomalous change in the maxillary palpi of the insect, by means of which the moth collects bundles of pollen, which it inserts into the stigmatic tube, and during this peculiar act deposits her eggs in the young fruit. Prof. Riley has reasons to believe that this is the only insect engaged in the fertilization of this plant. A mutual dependence is here met with of extreme interest. The yucca unfertilized forms no fruit, and the larva of the moth consequently perishes.
Prof. Augustus K, Grote, in an examination of butterflies, finds successive gradation in their structures, and shows that as these organs "become less serviceable to the insect they become more rigid and in position more elevated above the head in the butterfly, while in the moth they are more whip-like and directed forward." While protesting against the separations which have been made in the order based upon the antennæ, he directs attention "to the real differences in antennal structure between the butterflies and moths, while showing that the antennæ are modified by desuetude in the higher and former group." Prof. Grote,[1] in dealing with a family of moths, the Noctuidæ, calls attention to the unequal value of Acronycta, and is forced to admit that these differences become clear through the theory of evolution. He says: "Where in Acronycta there is a general prevailing uniformity in the appearance in a single group of species and generally broad distinctions between the larval forms, it is a not unreasonable conclusion that these larval differences are gradually evolved by a natural protective law, which intensifies their characters in the direction in which they are serviceable to the continuance of the species."
Those who have believed in types as fixed laws, rigidly impressed at the outset of life, are those also who have recognized in the cells of a honey-bee, as well as in the arrangement of leaves about the axis of a plant, a perfect mathematical adjustment of parts, which were stamped at the beginning, and have so continued to exist without deviation. For nearly two hundred years it has been believed that the instinct of a bee guided it to shape a cell which of all other forms should use the least amount of material. A theory having been established as to the constant shape of a bee's cell, namely, that it was an hexagonal prism with trihedral bases, each face of the base being a rhomb with certain definite angles, a mathematician was given the problem to construct similar cells, and to determine the best possible form with the use of the least amount of material. The coincidence between theory and observation and experiment was so remarkable as to settle apparently for all time the question as to the perfectly-implanted instinct of the bee with its unconscious power of accurate work. Prof. Jeffries Wyman,[2] to whose memoir I am indebted